Total Synthesis of Cyclic ADP-carbocyclic-ribose, a Stable Mimic of Ca^{2+}-Mobilizing Second Messenger Cyclic ADP-Ribose ${ }^{1}$

Satoshi Shuto, ${ }^{*}, \dagger$ Masayoshi Fukuoka, ${ }^{\dagger}$ Andrzej Manikowsky, ${ }^{\dagger}$ Yoshihito Ueno, ${ }^{\dagger}$ Takashi Nakano, ${ }^{\ddagger}$ Ritsu Kuroda, ${ }^{\ddagger}$ Hideyo Kuroda, ${ }^{\ddagger}$ and Akira Matsuda*, ${ }^{\dagger}$
Contribution from the Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan, and Department of Environmental Biology and Chemistry, Faculty of Science, Toyama University, 3190 Gofuku, Toyama, Toyama 930-8555, Japan

Received March 22, 2001

Abstract

The synthesis of cyclic ADP-carbocyclic-ribose (cADPcR, 4) designed as a stable mimic of cyclic ADP-ribose (cADPR, 1), a Ca^{2+}-mobilizing second messenger, was achieved using as the key step a condensation reaction with the phenylthiophosphate-type substrate $\mathbf{1 4}$ to form an intramolecular pyrophosphate linkage. The N-1-carbocyclic-ribosyladenosine derivative 16 was prepared via the condensation between the imidazole nucleoside derivative 17, prepared from AICA-riboside (19), and the readily available optically active carbocyclic amine 18. Compound 16 was then converted to the corresponding $5^{\prime \prime}$-phosphoryl-5'phenylthiophosphate derivatives 14 . Treatment of 14 with AgNO_{3} in the presence of molecular sieves ($3 \AA$) in pyridine at room temperature gave the desired cyclization product $\mathbf{3 2}$ in 93% yield, and subsequent acidic treatment provided the target cADPcR (4). This represents a general method for synthesizing biologically important cyclic nucleotides of this type. ${ }^{1} \mathrm{H}$ NMR analysis of cADPcR suggested that its conformation in aqueous medium is similar to that of cADPR. cADPcR, unlike cADPR, was stable under neutral and acidic conditions, where under basic conditions, it formed the Dimroth-rearranged N^{6}-cyclized product 34. cADPcR was also stable in rat brain membrane homogenate which has cADPR degradation activity. Furthermore, cADPcR was resistant to the hydrolysis by CD38 cADPR hydrolase, while cADPR was rapidly hydrolyzed under the same conditions. When cADPcR was injected into sea urchin eggs, it caused a significant release of Ca^{2+} in the cells, an effect considerably stronger than that of cADPR. Thus, $c A D P c R$ was identified as a stable mimic of cADPR.

Introduction

Cyclic ADP-ribose (cADPR, 1), a naturally occurring metabolite of $\mathrm{NAD}^{+},{ }^{2}$ has been shown to mobilize intracellular Ca^{2+} in various cells, such as sea urchin eggs, pancreatic beta cells, smooth muscle cells, cardiac myocytes, T-lymphocytes, and cerebellar neurons, indicating that it is a general mediator involved in Ca^{2+} signaling. ${ }^{3}$ The structure of cADPR had been investigated ${ }^{4}$ and was recently confirmed by X-ray crystallographic analysis as shown in Figure 1. ${ }^{4 \mathrm{c}}$

[^0]

2: $X=\mathrm{CH}_{2}, Y=\mathrm{N}$ 3: $X=O, Y=C H$

Figure 1. The structures of cADPR (1), cADPcR (4), and related compounds.

In cells, cADPR is synthesized from NAD^{+}by ADPribosylcyclase and acts as a second messenger; it is hydrolyzed rapidly by cADPR hydrolase to give inactive ADP-ribose under physiological conditions. ${ }^{3}$ cADPR is also known to be readily hydrolyzed nonenzymatically at the unstable N-1-glycosidic
linkage of its adenine moiety to give ADP-ribose, even in neutral aqueous solution. ${ }^{5}$ Although intensive studies of cADPR are still needed because of its biological importance, the biological as well as chemical instability of cADPR limits, to some extent, further studies of its physiological role. Therefore, stable analogues of cADPR exhibiting a Ca^{2+}-mobilizing activity in cells similar to that of cADPR are urgently required.

The synthesis of cADPR analogues and their biological effects have been studied extensively. ${ }^{6,7}$ Potter and co-workers synthesized cyclic aristeromycin-diphosphate-ribose (2) and showed that it acted as a poorly hydrolyzable Ca^{2+}-mobilizing mimic of cADPR. ${ }^{6 j}$ However, 2 is hydrolyzed by enzymes, although the rate is considerably slower than that of cADPR. ${ }^{6 j}$ More recently, cyclic 3-deazaadenosine-diphosphate-ribose (3) was synthesized by Walseth and co-workers as another analogue resistant to hydrolysis. ${ }^{6 p}$

We designed cyclic ADP-carbocyclic-ribose (cADPcR, 4) and its inosine congener 5 (cIDP-carbocyclic-ribose, cIDPcR) as stable mimics of cADPR, ${ }^{7}$ in which the oxygen atom in the N-1-ribose ring of cADPR is replaced by a methylene group. The mimics $\mathbf{4}$ and $\mathbf{5}$ should be resistant to both enzymatic and chemical hydrolysis, since they have a chemically and biologically stable N-alkyl linkage instead of the unstable $N-1$ glycosidic linkage of cADPR. These analogues preserve the functional groups of cADPR except for this ring oxygen and should have a conformation similar to that of cADPR. Therefore, we expect that these analogues would effectively mobilize intracellular Ca^{2+}, as cADPR; therefore, they could be used as pharmacological tools for further study of the mechanism of cADPR-modulated Ca^{2+}-signaling pathways.
cADPR and its analogues, including 2 and 3, have been synthesized by enzymatic or chemo-enzymatic methods. ${ }^{6}$ ADPribosyl cyclase from Aplysia californica mediates the intramolecular ribosylation of NAD^{+}and some modified NAD^{+} (prepared chemically or enzymatically) at the $N-1$-position of the purine moiety, to yield cADPR or the corresponding analogues. ${ }^{6}$ Although the specificity of ADP-ribosyl cyclase is somewhat loose, the analogues obtained by this method are limited by the substrate specificity of the enzyme. ${ }^{60}$ Furthermore, even though ADP-ribosylcyclase catalyzes the cyclization of the NAD^{+}analogues, in some cases the newly formed glycosidic
(5) Lee, H. C.; Aarhus, R. Biochim. Biophys. Acta 1993, 1164, 68-74. (6) (a) Walseth, T. F.; Lee, H. C. Biochim. Biophys. Acta 1993, 1178, 235-242. (b) Lee, H. C.; Aarhus, R.; Walseth, T. F. Science 1993, 261, 352-355. (c) Graeff, R. M.; Walseth, T. J.; Fryxell, K.; Branton, W. D.; Lee, H. C. J. Biol. Chem. 1994, 269, 30260-30267. (d) Zhang, F.-J.; Sih, C. J. Bioorg. Med. Chem. Lett. 1995, 5, 1701-1706. (e) Zhang, F.-J.; Gu, Q.-M.; Jing, P. C.; Sih, C. J. Bioorg. Med. Chem. Lett. 1995, 5, 22672272. (f) Zhang, F.-J.; Yamada, S.; Gu, Q.-M.; Sih, C. J. Bioorg. Med. Chem. Lett. 1996, 6, 1203-1208. (g) Zhang, F.-J.; Sih, C. J. Tetrahedron. Lett. 1995, 63, 9289-9292. (h) Zhang, F.-J.; Sih, C. J. Bioorg. Med. Chem. Lett. 1996, 6, 2311-2316. (i) Ashamu, G. A.; Galione, A.; Potter, B. V. L. J. Chem. Soc. Chem. Commun. 1995, 1359-1356. (j) Bailey, B. C.; Fortt, S. M.; Summerhill, R. J.; Galione, A.; Potter, B. V. L. FEBS Lett. 1996, 379, 227-230. (k) Bailey, V. C.; Sethi, J. K.; Fortt, S. M.; Galione, A.; Potter, B. V. L. Chem. Biol. 1997, 4, 51-60. (1) Bailey, V. C.; Sethi, J. K.; Galione, A.; Potter, B. V. L. J. Chem. Soc. Chem. Commun. 1997, 695696. (m) Sethi, J. K.; Empson, R. M.; Bailey, V. C.; Potter, B. V. L.; Galione, A. J. Biol. Chem. 1997, 272, 16358-16363. (n) Ashamu, G. A.; Sethi, J. K.; Galione, A.; Potter, B. V. L. Biochemistry 1997, 36, 95099517. (o) Zhang, F.-J.; Gu, Q.-M.; Sih, C. J. Bioorg. Med. Chem. 1999, 7, 653-664. (p) Wong, L.; Aarhus, R.; Lee, H. C.; Walseth, T. F. Biochim. Biophys. Acta 1999, 1472, 555-564.
(7) (a) Shuto, S.; Shirato, M.; Sumita, Y.; Ueno, Y.; Matsuda, A. J. Org. Chem. 1998, 63, 1986-1994. (b) Shuto, S.; Shirato, M.; Sumita, Y.; Ueno, Y.; Matsuda, A. Tetrahedron Lett. 1998, 39, 7341-7344. (c) Fukuoka, M.; Shuto, S.; Minakawa, N.; Ueno, Y.; Matsuda, A. Tetrahedron Lett. 1999, 40, 5361-5364. (d) Sumita, Y.; Shirato, M.; Ueno, Y.; Matsuda, A.; Shuto, S. Nucleosides Nucleotides Nucleic Acids 2000, 19, 175-188. (e) Fukuoka, M.; Shuto, S.; Minakawa, N.; Ueno, Y.; Matsuda, A. J. Org. Chem. 2000, 65, 5238-5248.

Scheme 1. Previous Synthesis of cIDPcR (8) and Its 8 -Bromo Congener (9)

bond is attached to the $N-7$ nitrogen of the purine ring: e.g., the product of the enzymatic reaction of an inosine or guanosine analogue of NAD^{+}is not the desired $N-1$-cyclized product, but rather the $N-7$-cyclized product. $6 \mathrm{cc}, \mathrm{g}$
In the chemical synthesis of cADPR and its analogues, the intramolecular condensation to form the pyrophosphate linkage should be the key step; however forming such an intramolecular pyrophosphate linkage has proved difficult for several groups including ours, ${ }^{60,7,9}$ thereby preventing completion of the synthesis of target cADPR analogues. One of the first attempts to prepare cADPR or its analogues by chemical intramolecular condensation was reported by Gu and Sih. ${ }^{8}$ They tried to perform a condensation between the two phosphate groups of $\mathrm{N}-1$ -phosphoribosyl-AMP with EDC, but the yield of cADPR was less than $1 \% .^{8}$ Later, Fortt and Potter attempted the synthesis of an analogue of cIDPcR. However, the forming of the intramolecular pyrophosphate linkage proved unsuccessful. ${ }^{9 a}$

We investigated the intramolecular condensation of the $\mathrm{N}-1-$ carbocyclic-ribosylinosine bisphosphate derivative 6 which produced none of the desired cyclized product 8 . However, we found that cyclization of the bisphosphate 7 proceeded to give the desired 9 when a bromo group was introduced at the 8 -position probably by restricting the conformation of the substrate to a product-like syn-form (Scheme 1a)..7,10 The protecting groups were then removed to complete the synthesis of cIDPcR (5). ${ }^{7 \text { a }}$ This was the first total synthesis of a cADPRrelated compound, but the over-all yield was low. ${ }^{7 a}$ More recently, we have developed an efficient method for forming the intramolecular pyrophosphate linkage by activation of phenylthiophosphate type substrates, such as $\mathbf{1 0}$ or 11, with I_{2} or AgNO_{3} in the presence of molecular sieves $(3 \AA$) in pyridine,
(8) Gu, Q.-M.; Sih, C. J. J. Am. Chem. Soc. 1994, 116, 7481-7486.
(9) Synthetic approaches to carbocyclic analogues of cADP-ribose have been published by other groups. Although the $N-1$-carbocyclic-inosine and -adenosine structures have been constructed, formation of the intramolecular pyrophosphate linkage has not been achieved. (a) Fortt, S.; Potter, B. V. L. Tetrahedron Lett. 1997, 38, 5371-5374. (b) Hutchinson, E. J.; Taylor, B. F.; Blackburn, G. M. J. Chem. Soc., Chem. Commun. 1997, 1859-1860.
(10) Although a predominance of anti- over syn-conformers is wellknown for natural nucleosides and their anologues, introducing a bulky substituent, such as a bromo group, into the 8 -position of purine nucleosides restricts the conformation in a syn-form through steric repulsion with the ribose moiety: Saenger, W. Principles of Nucleic Acid Structure; SpringerVerlag: New York, 1983.

Scheme 2. Retrosynthetic Analysis of cADPcR (4)

and have successfully synthesized the cIDPcR and its 8-bromo congener (Scheme 1b). ${ }^{7 c, e}$ This method is very effective for producing the desired cyclization products, even without the conformational restriction of the substrate to a product-like synform by the introduction of the 8 -bromo substituent. The 8 -unsubstituted cyclization product $\mathbf{1 2}$ and the 8 -bromo product 13 were obtained in 81% and quantitative yields from the corresponding substrates $\mathbf{1 0}$ and 11, respectively.

With these encouraging results in mind, we next tried to synthesize cADPcR (4). In this report, we describe the synthesis and chemical and biological properties of $\mathbf{4}$, a stable mimic of cADPR.

Results and Discussion

Synthetic Plan. As described above, we first tried to synthesize the inosine congener cIDPcR (5), since its synthesis was thought to be easier than that of cADPcR (4). The charged N-1-substituted moiety ($\mathrm{p} K_{\mathrm{a}}$ of cADPR is $8.3^{4 \mathrm{~b}}$), which was expected to be unstable, especially under basic and nucleophilic conditions, might prove to be troublesome. In the synthesis of the target cADPcR, construction of the $N-1$-carbocyclic structure and the condensation between the two phosphate moieties forming an intramolecular pyrophosphate linkage should be the two most important steps. Our plan for the synthesis is shown in Scheme 2. Formation of the intramolecular pyrophosphate linkage was planned to investigate by treating 5^{\prime}-phenylthiophosphate $\mathbf{1 4}$ or its regioisomer $5^{\prime \prime}$ - phenylthiophosphate $\mathbf{1 5}$ as the substrate with AgNO_{3} or $\mathrm{I}_{2} /$ molecular sieves $(3 \AA$) as a promoter. The phenylthiophosphates 14 and 15 would be obtained by functional group transformations of N-1-carbocyclicribosyladenosine derivative 16. The $N-1$-carbocyclic-ribosyladenosine structure of $\mathbf{1 6}$ could be constructed from the imidazole nucleoside derivative $\mathbf{1 7}$ and the optically active carbocyclic amine 18. Compounds $\mathbf{1 7}$ and $\mathbf{1 8}$ would be readily prepared from 5-aminoimidazole-4-carboxamide riboside (AICAR, 19) and commercially available (1R)-(-)-2-azabicyclo[2.2.1]-hept-5-en-3-one (20). ${ }^{\text {b }}$

The key condensation reaction between a phenylthiophosphate and a phosphate forming the pyrophosphate linkage promoted by I_{2} or AgNO_{3} was originally developed by Hata and co-workers. ${ }^{11}$ We recently improved the Hata's reaction and

Scheme 3

used it effectively for the synthesis of cIDPcR as described above. ${ }^{7 c, e}$

Construction of the N -1-Carbocyclic-Ribosyl-Adenosine Structure. Development of an efficient method for constructing the N -1-carbocyclic-ribosyladenosine structure was essential for completing the synthesis of cADPcR (4). Recently, Blackburn and co-workers reported that treatment of imidazole nucleoside 21 and carbocyclic amine $\mathbf{1 8}$ under basic conditions provided N -1-carbocyclic-ribosyladenosine derivative 16 (Scheme 3). ${ }^{9 b}$ Although their method was likely to be the most efficient one for the construction of N -1-carbocyclic-ribosyladenosine structure known so far, the yield was insufficient (40%).

We attempted to improve their method using the N-benzylimidazole derivative $\mathbf{2 2}$ as a model substrate, and the results are shown in Scheme 4 and Table 1. In the condensation reaction of Blackburn and co-workers, ${ }^{9 b}$ it may be that the Dimroth rearrangement ${ }^{12}$ of the desired N-1-carbocyclic product 16

[^1]
Scheme 4

Table 1. Condensation Reactions between 18 and 22, ${ }^{a}$ and Basic Treatments of $\mathbf{2 3}$ and 24.

entry	substrate	conditions	yield (\%) ${ }^{\text {b }}$		
			23	24	25
1	$22+18$	$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H} / \mathrm{MeCN}$, reflux	73	trace	-
2	$22+18$	$\mathrm{MeOH}, \mathrm{rt}$	80	12	-
3	$22+18$	EtOH , rt	92	-	-
4	23	$\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{EtOH}, \mathrm{rt}$	-	98	-
5	$22+18$	$\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{MeCN}$, rt	trace	73	-
6	$22+18$	$\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{MeOH}, \mathrm{rt}$	trace	87	-
7	24	1 M NaOH , reflux	-	-	quant

${ }^{a}$ The reactions were performed using a slightly excess (1.1 equiv) of $\mathbf{1 8}$ to $\mathbf{2 2} .{ }^{b}$ Isolated yield.
(Scheme 3) takes place, which produces N^{6}-alkyladenine products from N -1-alkyladenines under basic conditions, thereby decreasing the yield. Consequently, we first treated a mixture of $\mathbf{1 8}$ and $\mathbf{2 2}$ under acidic (entry 1) or neutral (entries 2 and 3) conditions, and these reactions gave the coupled but not cyclized product $\mathbf{2 3}$ in excellent yield. Since compound $\mathbf{2 3}$ could be an intermediate for forming the desired $\mathrm{N}-1$-carbocyclic product 24, we examined its pyrimidine ring-closure reaction and found that treatment of $\mathbf{2 3}$ under mild basic conditions, namely with $\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{EtOH}$ at room temperature, quantitatively produced the desired compound 24 (entry 4). The direct treatment of a mixture of 18 and 22 with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeCN or MeOH was next performed to give 24 in 73 and 87% yield (entries 5 and 6). We confirmed that the Dimroth rearrangement of 24, described above, actually occurred to form the N^{6}-carbocyclic product $\mathbf{2 5}$ quantitatively (Scheme 4), when 24 was treated under basic conditions, such as heating it in 1 M NaOH (entry 7).

Synthesis of cADPcR (4). On the basis of the above results, we next investigated the synthesis of cADPcR (4), which is summarized in Schemes 5 and 6. A sugar-protected imidazole nucleoside $26,{ }^{9 b}$ prepared from AICAR (19), was heated in $\mathrm{HC}(\mathrm{OMe})_{3}$ under reflux in the presence of a catalytic amount of TFA to give the methoxymethylene derivative $\mathbf{1 7}$ quantitatively. Compound $\mathbf{1 7}$ was next subjected to the pyrimidine ringclosure reaction with the carbocyclic amine 18 under the conditions described above. When a mixture of $\mathbf{1 7}$ and $\mathbf{1 8}$ (1.2 equiv) was treated with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH at room temperature, the desired ring-closure product 16 was obtained in 83% yield (Scheme 5). The N-1-carbocyclic-ribosyladenine structure of $\mathbf{1 6}$ was confirmed by its HMBC spectrum; a correlation between the $\mathrm{H}-2$ of the adenine and the $\mathrm{C}-1^{\prime \prime}$ of the cyclopentane ring was observed. Thus, the desired N-1-carbocyclic-ribosyladeno-

Scheme 5^{a}

${ }^{a}$ Reagents and conditions: a) $\mathrm{HC}(\mathrm{OMe})_{3}$, cat. $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, reflux, quant; b) 18, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, \mathrm{rt}, 83 \%$; c) PSS, TPSCI, py, rt.
sine structure was efficiently constructed from the imidazole nucleoside derivative $\mathbf{1 7}$ and the readily available optically active carbocyclic amine 18. This should be a general method for preparing N-1-carbon-substituted adenosine derivatives without the occurrence of the Dimroth rearrangement.

Introduction of a bis(phenylthio)phosphoryl group at the $5^{\prime \prime}$ position of $\mathbf{1 6}$ to produce $\mathbf{2 7}$ was attempted (Scheme 5). When 16 was treated with a cyclohexylammonium S, S-diphenylphosphorodithioate (PSS)/2,4,6-triisopropylbenzenesulfonyl chloride (TPSCl)/pyridine system, ${ }^{11}$ progress of the reaction was observed by TLC. However the product 27 was too unstable to be isolated; the spot likely to be for 27 disappeared during the workup after the reaction. Therefore, we decided to forego preparation of the $5^{\prime \prime}$-phenylthiophosphate-type substrate 15 via 27 and subsequently investigated the introduction of a bis(phenylthio)phosphoryl group at the 5^{\prime}-positon of the ribose moiety, as shown in Scheme 6. After protection of the $5^{\prime \prime}$-hydroxyl of 16 with a monomethoxytrityl (MMTr) group, the $5^{\prime}-O$-TBS group of the product 28 was removed with TBAF to give 29. Treatment of 29 with $\mathrm{PSS} / \mathrm{TPSCl}$ in pyridine successfully gave the 5^{\prime}-bis(phenylthio)phosphate 30 in 66% yield. Removal of the $5^{\prime \prime}-O-\mathrm{MMTr}$ group of $\mathbf{3 0}$ with aqueous AcOH gave 31 in 77% yield. An unprotected phosphoryl group was introduced at the resulting $5^{\prime \prime}$-primary hydroxyl of $\mathbf{3 1}$ by Yoshikawa's method with $\mathrm{POCl}_{3} /(\mathrm{EtO})_{3} \mathrm{PO},{ }^{13}$ followed by treating the product with $\mathrm{H}_{3} \mathrm{PO}_{2}$ and $\mathrm{Et}_{3} \mathrm{~N}$ in pyridine, ${ }^{14}$ affording 5'-phenylthiophosphate $\mathbf{1 4}$, the substrate for the intramolecular condensation reaction, in 75% yield as a triethylammonium salt after purification by a C_{18} column chromatography.

The intramolecular condensation reaction of $\mathbf{1 4}$ under high dilution conditions was next investigated (Scheme 6). When a solution of $\mathbf{1 4}$ in pyridine was added slowly, using a syringe pump, to a mixture of a large excess of AgNO_{3} and $\mathrm{Et}_{3} \mathrm{~N}$ in the presence of molecular sieves ($3 \AA$) in pyridine at room temperature, ${ }^{7 c, e}$ the desired cyclization product 32 was obtained in 93% yield as a triethylammonium salt, after purification by C_{18} column chromatography. Although a similar reaction with I_{2} instead of AgNO_{3} as a promoter also produced the cyclization product 32 as the major product, the yield lowered (50\%) and several byproducts were observed by HPLC analysis. Nucleo-

[^2]
Scheme ${ }^{a}$

${ }^{a}$ Reagents and conditions: a) MMTrCI, pyridine, rt, 71\%; b) TBAF, THF, AcOH, rt, quant; c) PSS, TPSCI, py, rt, 66%; d) aq $80 \% \mathrm{AcOH}, \mathrm{rt}$, 77% e) 1) $\left.\mathrm{POCI}_{3},(\mathrm{MeO})_{3} \mathrm{PO}, \mathrm{rt}, 2\right) \mathrm{H}_{3} \mathrm{PO}_{2}, \mathrm{Et}_{3} \mathrm{~N}$, pyridine, rt, 75% (2 steps); f) $\mathrm{AgNO}_{3}, \mathrm{MS} 3 \AA, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{py}, \mathrm{rt}, 93 \% ; \mathrm{g}$) $60 \% \mathrm{HCO} 2 \mathrm{H}, \mathrm{rt}, 88 \%$.
philic attack by iodide ion, formed in the reaction, to the positively charged electron-deficient purine moiety of $\mathbf{3 2}$ might occur in this case to form the byproducts. The desired cyclic pyrophosphate structure of $\mathbf{3 2}$ was confirmed by the following data: (1) the molecular-ion peak corresponding to 32 was observed at $m / z 618$ in the FAB mass spectrum; (2) its ${ }^{31} \mathrm{P}$ NMR spectrum showed two signals at -10.39 and -10.80 ppm , which are typical chemical shifts for a pyrophosphate moiety, with a coupling constant ($J=15.3 \mathrm{~Hz}$) similar to that of cADPR (-9.92 and $-10.67 \mathrm{ppm}, J=14.6 \mathrm{~Hz}$). ${ }^{4 \mathrm{e}}$ Finally, the cyclic pyrophosphate 32 was treated with aqueous $\mathrm{HCO}_{2} \mathrm{H}$ at room temperature to give the target cADP-carbocyclic-ribose (4) in 88% yield.

The results of this study as well as the previous synthesis of cIDPcR (5) ${ }^{7 c, e}$ clearly demonstrate that the strategy using a phenylthiophosphate-type substrate in the key intramolecular condensation reaction forming the pyrophosphate linkage is very efficient for the total syntheses of cADPR related compounds.

The Structure of cADPcR. The structure of cADPcR (4) was fully confirmed by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR, HMBC, NOE, HR-FAB, and UV spectra. We investigated the conformation of cADPcR and compared it with that of cADPR reported previously. ${ }^{4 c, e}{ }^{1} \mathrm{H}$ NMR data of cADPcR in $\mathrm{D}_{2} \mathrm{O}$, together with those of cADPR, ${ }^{4 e}$ are summarized in S-4 (see Supporting Information). It has been demonstrated that the ribose moiety of the adenosine residue in cADPR adopts a C^{\prime}-endo conformation by ${ }^{1} \mathrm{H} \mathrm{NMR}^{4 \mathrm{e}}$ and X-ray crystallographic ${ }^{4 \mathrm{c}}$ analyses. Each coupling constant between the ribose protons of the adenosine residue in cADPcR is similar to the corresponding one in cADPR. These similar J values between cADPcR and cADPR suggest that the ribose moiety of cADPcR also adopts a C2'-endo conformation as cADPR does. ${ }^{4 \mathrm{e}}$

The NOE experiments on cADPcR demonstrated that the adenosine residue is restricted in a syn-form around the glycosidic linkage due to the cyclic structure of the molecule: irradiation of the H-8 produced a strong NOE (14.4\%) at the $\mathrm{H}-1^{\prime}$ as shown in Figure 2. The similar syn-conformation of the adenosine moiety of cADPR has been confirmed by X-ray crystallographic ${ }^{4 c}$ and ${ }^{1} \mathrm{H} \mathrm{NMR}^{4 \mathrm{e}}$ studies. When the ${ }^{1} \mathrm{H}$ NMR technique is used, conformation of the carbocyclic moiety of cADPcR should be analyzed more easily and more precise than

Figure 2. NOE data of $\mathrm{cADPcR}(4)$ in $\mathrm{D}_{2} \mathrm{O}$.
the corresponding N-1-ribose moiety of cADPR, due to the presence of the protons at the $6^{\prime \prime}$-position in cADPcR. Thus, a very strong NOE was observed at the H-2 (14.5\%), when the $\mathrm{H}-6^{\prime \prime} \mathrm{b}$ was irradiated. Irradiation of the $\mathrm{H}-2$ of cADPcR produced a strong NOE at $\mathrm{H}-6^{\prime \prime} \mathrm{b}(7.2 \%)$ together with moderate ones at both the $\mathrm{H}-2^{\prime \prime}(4.8 \%)$ and the $\mathrm{H}-3^{\prime \prime}(3.9 \%)$, revealing a C 6 "-endo envelop-like conformation of the carbocyclic moiety, in which the $\mathrm{C} 1^{\prime \prime}-\mathrm{C} 2^{\prime \prime}-\mathrm{C} 3^{\prime \prime}-\mathrm{C} 4^{\prime \prime}$ unit is almost flat. This $\mathrm{C} 6^{\prime \prime}-$ endo envelop-like conformation is also supported by a large $J_{1^{\prime \prime}, 6^{\prime \prime} \text { a }}$ value (10.2 Hz) and a rather small $J_{1^{\prime \prime}, 6^{\prime \prime} \mathrm{b}}$ value (2.9 Hz). It has been proposed that the N-1-ribose moiety of cADPR adopts a $\mathrm{C} 1^{\prime \prime}-\mathrm{C} 2^{\prime \prime}-\mathrm{C} 3^{\prime \prime}-\mathrm{C} 4^{\prime \prime}$ flat conformation in aqueous solution, since the $\mathrm{H}-2-\mathrm{H}-2^{\prime \prime}$ and the $\mathrm{H}-2-\mathrm{H}-3^{\prime \prime}$ correlations with a similar strength were observed in its ROESY spectrum. ${ }^{4 e}$ On the other hand, the X-ray crystallographic analysis of cADPR showed the $\mathrm{C} 3^{\prime \prime}$-exo envelop conformation of the N-1-ribose moiety. ${ }^{4 c}$ The $J_{1^{\prime \prime}, 2^{\prime \prime}}, J_{2^{\prime \prime}, 3^{\prime \prime}}$, and $J_{3^{\prime \prime}, 4^{\prime \prime}}$ values of cADPcR obtained in this study are similar to the corresponding J values of cADPR. ${ }^{4 e}$ Thus, it is likely that both the $N-1$-carbocyclic moiety in cADPcR and the N-1-ribose moiety in cADPR adopt an analogous $\mathrm{C} 1^{\prime \prime}-\mathrm{C} 2^{\prime \prime}-\mathrm{C} 3^{\prime \prime}-\mathrm{C} 4^{\prime \prime}$ flat/ $\mathrm{C}^{\prime \prime}\left(\mathrm{O}^{\prime \prime}\right)$-endo envelop conformation in aqueous solution.

On the basis of these results, we concluded that the threedimensional structure of cADPcR in aqueous solution is analogous to that of cADPR, as we had expected.

Chemical Stability of cADPcR. It has been suggested that cADPcR is stable in aqueous media, since the final acidic removal of the isopropylidene groups of $\mathbf{3 2}$ was successful in furnishing cADPcR (4) in high yield as described above

34

35

Figure 3. Structures of Dimroth rearrangement product 34 and related compounds.
(Scheme 6). Stability of cADPcR (4) and cADPR (1) in aqueous solution was examined in detail. The two compounds were treated in acidic (pH 2.0), neutral (pH 7.0), and alkaline (pH 12.0) buffers at $37^{\circ} \mathrm{C}$, and the time courses were analyzed by HPLC. The results are shown in S-1 (see Supporting Information). As we hypothesized, cADPcR is very stable and completely resistant to hydrolysis under acidic and neutral conditions, whereas cADPR rapidly decomposed with a $t_{1 / 2}$ of 33.8 h at pH 2.0 and 60.5 h at pH 7.0 . The product derived from cADPR in neutral and acidic solutions was identified as ADPribose by HPLC.

On the other hand, when cADPR and cADPcR were treated under high alkaline conditions (pH 12.0), both the compounds decomposed with a $t_{1 / 2}$ of 36.0 h (cADPR) and 37.1 h (cADPcR). However, HPLC analyses suggested that the reaction course of cADPcR in alkaline solution was different from that of cADPR: only one product was formed from cADPcR by alkaline treatment while the formation of at least three products was observed by HPLC analysis during treatment of cADPR under the same conditions.

The Dimroth Rearrangement of cADPcR: Formation of N^{6}-cyclic ADP-carbocyclic-Ribose. As described above, when the N-1-carbocyclic-ribosyladenine derivative 24 was treated with aqueous NaOH , the Dimroth rearrangement occurred to give the corresponding N^{6}-carbocyclic product 25 (Scheme 4). Ames and co-workers reported that N-1-(phosphoribosyl)adenosine 5^{\prime}-triphosphate underwent the Dimroth rearrangement to form the corresponding N^{6}-phosphoribosyl-product 33 (Figure 3). ${ }^{12 b}$ Therefore, it would be reasonable to assume that the product of the alkaline treatment of cADPcR (4) should be the Dimroth-rearranged N^{6}-cyclic ADP-carbocyclic-ribose (34, Figure 3). We treated cADPcR with aqueous $\mathrm{NaOH} / \mathrm{KCl}$ buffer $(\mathrm{pH} 12)$ at $37{ }^{\circ} \mathrm{C}$ for 4 days on a preparative scale. After purification by ion-exchange column chromatography, the N^{6} product $\mathbf{3 4}$ was obtained in 70% yield as a triethylammonium salt. The structure of $\mathbf{3 4}$ was confirmed by the following data: (1) the molecular-ion peak was observed at $m / z 538$ in the FAB mass spectrum; (2) two signals around -10 ppm in the ${ }^{31} \mathrm{P}$ NMR spectrum supported the cyclic pyrophosphate structure; ${ }^{4 e}$ (3) a $\lambda_{\text {max }}$ in the UV spectrum was observed at 271 nm , which is the typical absorption for N^{6}-alkyladenosine derivatives; ${ }^{\text {bb }}$ (4) the ${ }^{13} \mathrm{C}$ NMR chemical shift pattern of the base moiety was
analogous to that of N^{6}-methyladenosine derivatives, ${ }^{15}$ (5) a correlation of the $\mathrm{H}-1^{\prime \prime}$ was not observed at the $\mathrm{C}-2$ but at the C-6 in the HMBC spectrum, supporting its N^{6}-carbocyclicribosyl structure.

The structure of cADPR was originally presented as the N^{6} cyclic ribosyl compound 35 (Figure 3) by Lee and co-workers, ${ }^{4 a}$ and later revised as N-1-cyclic regioisomer 1 by its X-ray crystallographic, ${ }^{4 \mathrm{c}} \mathrm{UV},{ }^{4 \mathrm{~b}, \mathrm{~d}}$ and ${ }^{1} \mathrm{H} \mathrm{NMR}^{4 \mathrm{e}}$ analyses. The N^{6} cyclized regioisomer 35 of cADPR has not been synthesized; Jacobson and co-workers reported that the alkaline treatment of cADPR does not result in a Dimroth rearrangement but instead in hydrolysis at the N-1-position to afford ADP-ribose because of its unstable $N-1$-glycosidic linkage. ${ }^{4 b}$ Accordingly, the Dimroth rearranged N^{6}-carbocyclic product 34 , which corresponds to the carbocyclic congener of $\mathbf{3 5}$, may be of biological importance.

Stability of cADPcR in Rat Brain Extract. The degradation enzymes of cADPR (1) are known to be widely distributed in brain extracts of mammals as well as in invertebrates. ${ }^{16}$ We investigated whether cADPcR (4) is stable in brain extract having cADPR degradation enzymes. Brain extract from rats was prepared according to the previous method. ${ }^{16}$ cADPR was first treated with the extract at $37{ }^{\circ} \mathrm{C}$ to be rapidly degraded, as shown in S-2 (see Supporting Information). As expected, under the same conditions, cADPcR was almost completely resistant to degradation by the extract. After 120 min of treatment, about 90% of cADPR was degraded, whereas most of cADPcR remained. Thus, it was suggested that cADPcR would be stable under physiological conditions.

Resistance of cADPcR to the CD38 cADPR Hydrolase. The cell-surface antigen CD38, a transmembrane glycoprotein, is known to synthesize cADPR (1) from NAD ${ }^{+} .{ }^{17}$ It is also known CD38 catalyzes not only the formation of cADPR but also the hydrolysis of cyclic ADPR. ${ }^{17}$ Therefore, we planned to investigate whether cADPcR (4) was resistant to the hydrolysis by CD38. The recombinant CD38 fused with thioredoxin (ThioHis-CD38), which involves the extracellular domain of CD38, was expressed in Escherichia coli BL21(DE3) and purified according to the previously reported method by Katada and co-workers. ${ }^{18}$

The prepared extracellular domain of CD38 rapidly hydrolyzed cADPR, and ADP-ribose was the sole product observed on HPLC (S-3, see Supporting Information), as previously reported. ${ }^{18}$ However, when cADPcR was treated under the same hydrolysis conditions, it was, not surprisingly, completely resistant to the CD38 hydrolase as shown in S-3 (see Supporting Information).
Ca^{2+}-Mobilizing Induced by cADPcR in Sea Urchin Eggs. Since the discovery of cADPR (1), sea urchin eggs have been used for bioassay of cADPR and its analogues. We examined whether cADPcR (4) could induce the $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ increase when it was injected into the unfertilized eggs of A. crassispina. Figure 4 shows representative time courses of the $\left[\mathrm{Ca}^{2+}\right]_{i}$ changes induced by cADPR (a) or cADPcR (b). Injection of cADPR at a final concentrations of 30 to 500 nM induced a small increase in $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$. Injection of cADPcR at a final concentration of 30

[^3]a) CADPR (1)

b) $\operatorname{cADPcR}(4)$

Figure 4. Time courses of the $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ changes induced by cADPR (1, a) and cADPcR (4,b) injected into eggs of A. crassispina: ($\mathbf{(}) 30$ nM , (■) 200 nM , ($\mathbf{\Delta}$) 500 nM .
nM induced a $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ increase comparable to the peak value of the 500 nM cADPR-induced Ca^{2+} transient. Injection of cADPcR at a final concentration of 200 nM induced the peak value of $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ at about $3.3 \mu \mathrm{M}$, which was more than 10 times higher that induced by cADPR. These results clearly show a potent Ca^{2+}-mobilizing activity of cADPcR in comparison to that of cADPR. ${ }^{19}$ This difference seems to be caused by the fact that cADPcR is much more biologically stable than cADPR, as described above. ${ }^{20}$

Conclusions

We have successfully synthesized cADPcR (4) designed as a stable mimic of cADPR (1). The $N-1$-carbocyclic adenosine structure was efficiently constructed via condensation between an imidazole nucleoside derivative 17, prepared from AICAriboside (19), and a readily available optically active carbocyclic amine 18. The key intramolecular condensation reaction of the phenylthiophosphate-type substrates $\mathbf{1 4}$ proceeded with $\mathrm{AgNO}_{3} /$ molecular sieves ($3 \AA$) to give the cyclization product $\mathbf{3 2}$ in high yield. This method would be applicable to the synthesis of other cADPR analogues and may be an entry to a general method for synthesizing biologically important cyclic nucleotides of this type. cADPcR was shown to be resistant to chemical and biochemical hydrolysis. It released Ca^{2+} in sea urchin eggs, and the activity was stronger than that of cADPR. These results

[^4]suggest that cADPcR is a stable mimic of cADPR, as we hypothesized.

Experimental Section

Chemical shifts are reported in ppm downfield from TMS (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$) or $\mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\right)$. All of the ${ }^{1} \mathrm{H}$ NMR assignments described were in agreement with COSY spectra. Thin-layer chromatography was done on Merck coated plate $60 \mathrm{~F}_{254}$. Silica gel chromatography was done on Merck silica gel 5715. Reactions were carried out under an argon atmosphere.

1-Benzyl-4-cyano-5-[(methoxymethylene)amino]imidazole (22). A mixture of 5-amino-1-benzyl-4-cyanoimidazole ${ }^{21}$ (1.03 g 5.22 mmol), TFA ($20 \mu \mathrm{~L}, 0.26 \mathrm{mmol}$), and trimethyl orthoformate ($2.86 \mathrm{~mL}, 26.1$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(30 \mathrm{~mL})$ was stirred at $105^{\circ} \mathrm{C}$ for 1 h . The mixture was evaporated, and the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, 25 \%\right.$ acetone in $\left.\mathrm{CHCl}_{3}\right)$ to give 22 ($920 \mathrm{mg}, 74 \%$) as a pale yellow oil: ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta 8.42(\mathrm{~s}, 1 \mathrm{H}), 7.88$ (s, 1 H), $7.25-7.38(\mathrm{~m}, 5 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 3.88$ (s, 3 H).

1-Benzyl-4-cyano-5-[[($1 R, 2 S, 3 R, 4 R$)-2,3-(isopropylidenedioxy)-4hydroxymethyl)cyclopentyl]aminomethyleneamino]imidazole (23; Table 1, entry 3). A mixture of the optically active carbocyclic amine $\mathbf{1 8}(356 \mathrm{mg}, 1.90 \mathrm{mmol})$ and $22(415 \mathrm{mg}, 1.73 \mathrm{mmol})$ in $\mathrm{EtOH}(9 \mathrm{~mL})$ was stirred at room temperature for 23 h . The precipitated solid was filtered, washed by cold EtOH and $\mathrm{Et}_{2} \mathrm{O}$ and dried to give 23 (524 mg , 76%) as a white solid. The filtrate was evaporated, and the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, 5 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ to give further 23 ($107 \mathrm{mg}, 16 \%$) as a white solid: $\mathrm{mp}(\mathrm{MeOH}) 107-$ $109{ }^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta 8.14$ (m, $1 \mathrm{H}, \mathrm{NH}$, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), $8.05(\mathrm{~d}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH}, J=3.3 \mathrm{~Hz}), 7.66(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H}-2), 7.24-7.30\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.04\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}\right), 4.76(\mathrm{t}$, $1 \mathrm{H}, 5^{\prime}-\mathrm{OH}, J=5.0 \mathrm{~Hz}$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 4,41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right.$, $\left.\mathrm{H}-3^{\prime}\right), 4.17$ (m, $1 \mathrm{H}, \mathrm{H}-1^{\prime}$), $3.39\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{H}-5^{\prime}, J=5.8 \mathrm{~Hz}\right), 2.19-2.26$ (m, 1 H, H-6'b), 2.09 (m, 1 H, H-4'), 1.44-1.51 (m, 1 H, H-6'a), 1.19, 1.37 (each s, each 3 H , isopropyl CH_{3}); ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 100$ $\mathrm{MHz}) \delta 152.6,150.0,137.1,135.0,128.5,127.8,127.6,117.9,110.9$, 94.2, 84.8, 81.6, 62.0, 56.8, 46.4, 46.3, 32.5, 27.2, 24.8; HRMS (FAB, positive) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right) 396.2035$, found 396.2030; UV $(\mathrm{MeOH}) \lambda_{\text {max }} 289 \mathrm{~nm}$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{3}: \mathrm{C}, 63.78 ; \mathrm{H}, 6.37$; N, 17.71. Found: C, 63.79; H, 6.44; N, 17.80.

9-Benzyl-6-imino-1-[(1R,2S,3R,4R)-2,3-(isopropylidenedioxy)-4hydroxymethyl)cyclopentyl]purine (24). From 23 (Table 1, entry 4): A mixture of $\mathbf{2 3}(500 \mathrm{mg}, 1.26 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(9.0 \mathrm{mg}, 76 \mu \mathrm{~mol})$ in $\mathrm{EtOH}(70 \mathrm{~mL})$ was stirred at room temperature for 3 h . The mixture was evaporated, and the residual yellow oil was purified by column chromatography $\left(\mathrm{SiO}_{2}, 14 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ to give $24(487 \mathrm{mg}$, 98\%) as a white solid. From 18 and 22 (Table 1, entry 6): A mixture of $22(110 \mathrm{mg}, 0.46 \mathrm{mmol}), \mathbf{1 8}(94 \mathrm{mg}, 0.51 \mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(3.0$ $\mathrm{mg}, 23 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$ was stirred at room temperature for 18 h. The resulting solution was evaporated, and the residue was purified by column chromatography ($\mathrm{SiO}_{2}, 12 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give $\mathbf{2 4}$ $(157 \mathrm{mg}, 87 \%)$ as a white solid: ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta$ 8.13 (s, 1, H-2), 8.04 (s, 1 H, H-8), 7.35-7.26 (m, $5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$), 7.05 (br s, $1 \mathrm{H}, \mathrm{NH}$, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 5.28 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}$), 5.14 (m, $1 \mathrm{H}, \mathrm{H}-1^{\prime}$), $5.06\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, J=6.1 \mathrm{~Hz}\right), 4.73\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 5^{\prime}-\mathrm{OH}\right.$, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), $4.47\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 3.50\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{b}\right)$, 3.45 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{a}$), 2.03-2.17 (m, $3 \mathrm{H}, \mathrm{H}-4^{\prime}, \mathrm{H}^{\prime} 6^{\prime}$), 1.20, 1.44 (each s, each 3 H , isopropyl CH_{3}); ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 100 \mathrm{MHz}$) $\delta 153.9$, 146.8, 140.8, 139.1, 136.8, 128.6, 127.6, 127.3, 122.1, 111.9, 82.2, 81.0, 62.3, 61.6, 46.3, 46.0, 33.1, 27.6, 25.3; HRMS (FAB, positive) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right) 396.2035$, found 396.2039 ; UV (MeOH) $\lambda_{\text {max }} 263 \mathrm{~nm}$, sh 270. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{3} \cdot 0.3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 62.92$; H, 6.44; N, 17.47. Found: C, 62.92; H, 6.54; N, 17.45.

9-Benzyl- N^{6}-[[(1R,2S,3R,4R)-2,3-(isopropylidenedioxy)-4-hydroxy-methyl]-cyclopentyl]adenine (25 ; Table 1, entry 7). A suspension of $24(150 \mathrm{mg}, 0.38 \mathrm{mmol})$ in $1 \mathrm{M} \mathrm{NaOH}(2 \mathrm{~mL})$ was heated under reflux for 1 h , and then $\mathrm{MeOH}(1 \mathrm{~mL})$ was added. The resulting solution was extracted with CHCl_{3} (three times), and the organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was

[^5]purified by column chromatography $\left(\mathrm{SiO}_{2}, 5 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ to give 25 ($148 \mathrm{mg}, 98 \%$) as a white solid: ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400$ $\mathrm{MHz}) \delta 8.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 8.23(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 7.92$ (br s, $1 \mathrm{H}, \mathrm{NH}$, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), $7.34-7.24\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.37(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{N}-\mathrm{CH}_{2}$), $5.00\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 5^{\prime}-\mathrm{OH}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 4.60(\mathrm{~m}, 1$ $\left.\mathrm{H}, \mathrm{H}-1^{\prime}\right), 4.54\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, J=3.2,5.9 \mathrm{~Hz}\right), 4.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right)$, 3.47 (m, 2 H, H-5'), 2.28 (m, 1 H, H-6'a), 2.13 (m, 1 H, H-4'), 1.53 (m, $1 \mathrm{H}, \mathrm{H}-6^{\prime} \mathrm{b}$), 1.39, 1.19 (each s, each 3 H , isopropyl CH_{3}); ${ }^{13} \mathrm{C}$ NMR 153.9, 152.5, 148.9, 140.7, 137.1, 128.6, 127.4, 118.9, 110.6, 85.1, 82.0, 62.5, 55.9, 46.4, 46.1, 33.5, 27.2, 24.8; FAB-MS calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right) 396.2035$, found 396.2053 ; UV (MeOH) $\lambda_{\max } 270$ nm . Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{3}$: C, 63.78; H, 6.37; N, 17.71. Found: C, 63.81; H, 6.58; N, 17.50.

5-[(Methoxymethylene)amino]-1-[5-O-(tert-butyldimethylsilyl)-2,3- O-(isopropylidene)- β-D-ribofuranosyl]imidazole-4-nitrile (17). Compound $\mathbf{1 7}$ (1.35 g , quant) was obtained from 5-amino-1-[5'-O-(tert-butyldimethylsilyl)-2,3- O-(isopropylidene)- β-D-ribofuranosyl]imidazole-4-nitrile ($\mathbf{2 6},{ }^{9 \mathrm{~b}} 1.18 \mathrm{~g}, 3.0 \mathrm{mmol}$) as described for the synthesis of $\mathbf{2 2}$ after purification by column chromatography $\left(\mathrm{SiO}_{2}, 25 \% \mathrm{EtOAc}\right.$ in hexane) as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.39(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{N}=\mathrm{CH}), 7.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 5.84\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}, J_{1^{\prime}, 2^{\prime}}=2.9 \mathrm{~Hz}\right), 4.78$ (dd, 1 H, H-3', $\left.J_{3^{\prime}, 2^{\prime}}=6.0, J_{3^{\prime}, 4^{\prime}}=1.9 \mathrm{~Hz}\right), 4.74\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, J_{2^{\prime}, 1^{\prime}}=\right.$ $2.9, J_{2^{\prime}, 3^{\prime}}=6.0 \mathrm{~Hz}$), 4.38 (ddd, $1 \mathrm{H}, \mathrm{H}-4^{\prime}, J_{4^{\prime}, 3^{\prime}}=1.9, J_{4^{\prime}, 5^{\prime} \mathrm{a}}=2.5, J_{4^{\prime}, 5^{\prime} \mathrm{b}}$ $=2.9 \mathrm{~Hz}), 3.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.86\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{a}, J_{5^{\prime} \mathrm{a}, 4^{\prime}}=2.5\right.$, $J_{5^{\prime} \mathrm{a}, 5^{\prime} \mathrm{b}}=11.5 \mathrm{~Hz}$), $3.77\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{b}, J_{5^{\prime} \mathrm{b}, 4^{\prime}}=2.9, J_{5^{\prime} \mathrm{b}, 5^{\prime} \mathrm{a}}=11.5 \mathrm{~Hz}\right)$, 1.56, 1.34 (each s, each 3 H , isopropyl CH_{3}), 0.86 ($\mathrm{s}, 9 \mathrm{H}$, tert-butyl), $0.06,0.06$ (each s, each 3 H , dimethyl); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 67.8 \mathrm{MHz}\right)$ $\delta 159.9,143.4,133.5,115.7,113.8,99.2,91.4,86.5,86.1,81.0,63.5$, $54.6,27.2,25.8,25.3,18.3,-5.5,-5.7$; HRMS (FAB, positive) calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{Si} 437.2220\left(\mathrm{MH}^{+}\right)$, found 437.2195; UV (MeOH) $\lambda_{\text {max }}$ 273 nm . Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{Si}$: C, 55.02; H, 7.39; N, 12.83. Found C, 54.86; H, 7.43; N, 12.70.
N-1-[(1R,2S,3R,4R)-2,3-(Isopropylidenedioxy)-4-(hydroxymeth-yl)cyclopentyl]-5'- O-(tert-butyldimethylsilyl)-2', $\mathbf{3}^{\prime}$ - O-isopropylideneadenosine (16). A mixture of $\mathbf{1 7}(2.6 \mathrm{~g}, 6.0 \mathrm{mmol}), \mathbf{1 8}(1.35 \mathrm{~g}, 7.2$ mmol), and $\mathrm{K}_{2} \mathrm{CO}_{3}(41 \mathrm{mg}, 0.3 \mathrm{mmol})$ in $\mathrm{MeOH}(60 \mathrm{~mL})$ was stirred at room temperature for 4 h . The mixture was evaporated, and the residue was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, 6 \% \mathrm{MeOH}\right.$ in EtOAc) to give $16(2.94 \mathrm{~g}, 83 \%)$ as a white form: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ $\delta 7.79$ (s, 1 H, H-8), 7.66 (s, $1 \mathrm{H}, \mathrm{H}-2$), 7.19 (br s, $1 \mathrm{H}, \mathrm{NH}$), 5.99 (d, $\left.1 \mathrm{H}, \mathrm{H}-1^{\prime}, J_{1^{\prime}, 2^{\prime}}=2.7 \mathrm{~Hz}\right), 5.31\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, J_{2^{\prime \prime}, 1^{\prime \prime}}=5.2, J_{2^{\prime \prime}, 3^{\prime \prime}}=\right.$ $5.8 \mathrm{~Hz}), 5.06\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, J_{2^{\prime}, 1^{\prime}}=2.7, J_{2^{\prime}, 3^{\prime}}=6.2 \mathrm{~Hz}\right), 4.86(\mathrm{dd}, 1 \mathrm{H}$, $\left.\mathrm{H}-3^{\prime}, J_{3^{\prime}, 2^{\prime}}=6.2, J_{3^{\prime}, 4^{\prime}}=2.6 \mathrm{~Hz}\right), 4.74\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}, J_{3^{\prime \prime}, 2^{\prime \prime}}=5.8\right.$, $J_{3^{\prime \prime}, 4^{\prime \prime}}=2.7 \mathrm{~Hz}$), 4.57 (ddd, $1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}, J_{1^{\prime \prime}, 2^{\prime \prime}}=5.2, J_{1^{\prime \prime}, 6^{\prime \prime} \mathrm{a}}=9.7, J_{1^{\prime \prime}, 6^{\prime \prime} \mathrm{b}}$ $=9.6 \mathrm{~Hz}), 4.35\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}, J_{4^{\prime}, 3^{\prime}}=2.6, J_{4^{\prime}, 5^{\prime} \mathrm{a}}=3.9, J_{4^{\prime}, 5^{\prime} \mathrm{b}}=4.1\right.$ Hz), 3.79 (dd, $1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{a}, J_{5^{\prime}, 4^{\prime}}=3.9$, $J_{5^{\prime} \mathrm{a}, 5^{\prime} \mathrm{b}}=11.2 \mathrm{~Hz}$), $3.79(\mathrm{dd}, 1$ $\left.\mathrm{H}, \mathrm{H}-5^{\prime \prime} \mathrm{a}, J_{5^{\prime \prime} \mathrm{a}, 4^{\prime \prime}}=3.9, J_{5^{\prime \prime} \mathrm{a}, 5^{\prime \prime} \mathrm{b}}=10.8 \mathrm{~Hz}\right), 3.74\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{b}, J_{5^{\prime} \mathrm{b}, 4^{\prime}}\right.$ $\left.=4.1, J_{5^{\prime} \mathrm{b}, 5^{\prime} \mathrm{a}}=11.2 \mathrm{~Hz}\right), 3.73\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime} \mathrm{b}, J_{5^{\prime \prime}, 4^{\prime \prime}}=4.1, J_{5^{\prime \prime}, 5^{\prime \prime} \mathrm{a}}=\right.$ 10.8 Hz), 2.57 (m, $\left.1 \mathrm{H}, \mathrm{H}-6^{\prime \prime} \mathrm{a}\right), 2.52$ (m, $\left.1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 2.45$ (m, 1 H , H-6"b), 1.58, 1.53, 1.36, 1.29 (each s, each 3 H , isopropyl CH_{3}), 0.84 (s, 9 H , tert-butyl), 0.03, 0.02 (each s, each 3 H , dimethyl); NOE $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ irradiated H-2, observed H-1" (17.9%); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 67.8 \mathrm{MHz}\right) \delta 153.8,147.5,140.7,137.1,124.0,114.1,111.8$, $91.1,87.0,85.2,83.5,82.3,81.2,70.1,64.6,63.4,45.0,30.5,28.0$, 27.2, 25.8, 25.3, 18.3, $-5.5,-5.6$; HRMS (FAB, positive) calcd for $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{Si} 592.3166\left(\mathrm{MH}^{+}\right)$, found 592.3179; UV (MeOH) $\lambda_{\text {max }} 261$ nm , sh 293 nm . Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{45} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{Si}$: C, 56.83; H, 7.66; N, 11.83. Found C, 56.65; H, 7.56; N, 11.83 .
N-1-[(1R,2S,3R,4R)-2,3-(Isopropylidenedioxy)-4-[(5-monometh-oxytrityl)oxymethyl]cyclopentyl]-5'-O-(tert-butyldimethylsilyl)-2', 3^{\prime} -\boldsymbol{O}-isopropylideneadenosine (28). A mixture of $\mathbf{1 6}(1.78 \mathrm{~g}, 3.0 \mathrm{mmol})$ and MMTrCl $(1.85 \mathrm{~g}, 6.0 \mathrm{mmol})$ in pyridine $(20 \mathrm{~mL})$ was stirred at room temperature for 1.5 h . The mixture was evaporated, and the residue was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, 60 \% \mathrm{EtOAc}\right.$ in hexane) to give $\mathbf{2 8}$ $(1.85 \mathrm{~g}, 71 \%)$ as a white form: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.79(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H}-8), 7.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 7.44-6.81(\mathrm{~m}, 14 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.02$ (d, 1 $\left.\mathrm{H}, \mathrm{H}-1^{\prime}, J_{1^{\prime}, 2^{\prime}}=2.3 \mathrm{~Hz}\right), 5.11-5.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-2^{\prime \prime}\right), 5.02(\mathrm{~m}, 1$
$\left.\mathrm{H}, \mathrm{H}-1^{\prime \prime}\right), 4.89\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}, J_{3^{\prime}, 2^{\prime}}=6.1, J_{3^{\prime}, 4^{\prime}}=2.3 \mathrm{~Hz}\right), 4.56(\mathrm{~m}, 1$ H, H-3'), 4.37 (m, $\left.1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 3.84$ (dd, $1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{a}, J_{5^{\prime} \mathrm{a}, 4^{\prime}}=4.0, J_{5^{\prime}, 5^{\prime} \mathrm{b}}$ $=11.2 \mathrm{~Hz}), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.76\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{b}\right), 3.35(\mathrm{dd}, 1 \mathrm{H}$, $\mathrm{H}-5^{\prime \prime} \mathrm{a}, J_{5^{\prime \prime} \mathrm{a}, 4^{\prime \prime}}=3.2, J_{5^{\prime \prime}, 5^{\prime \prime} \mathrm{b}}=8.5 \mathrm{~Hz}$), 3.18 (dd, $1 \mathrm{H}, \mathrm{H}-5^{\prime \prime} \mathrm{b}, J_{5^{\prime \prime} \mathrm{b}, 4^{\prime \prime}}=$ $5.4, J_{5^{\prime \prime} \mathrm{b}, 5^{\prime \prime} \mathrm{a}}=8.5 \mathrm{~Hz}$), 2.46-2.39 (m, $\left.3 \mathrm{H}, \mathrm{H}-4^{\prime \prime}, \mathrm{H}^{\prime \prime}{ }^{\prime \prime}\right), 1.62,1.53$, $1.39,1.28$ (each s, each 3 H , isopropyl $\left.\mathrm{CH}_{3}\right), 0.88(\mathrm{~s}, 9 \mathrm{H}$, tert-butyl), $0.06,0.05$ (each s, each 3 H , dimethyl); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 67.8 \mathrm{MHz}\right)$ $\delta 158.5,154.2,146.3,144.6,144.5,140.4,136.6,135.7,130.3,128.4$, $127.7,126.8,124.0,114.1,113.0,91.0,87.0,86.1,85.2,82.8,81.6$, 81.3, 64.2, 63.6, 63.4, 55.2, 45.0, 33.6, 27.7, 27.2, 25.9, 25.3, 18.3, $-5.4,-5.5$; HRMS (FAB, positive) calcd for $\mathrm{C}_{48} \mathrm{H}_{62} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{Si} 864.4367$ $\left(\mathrm{MH}^{+}\right)$, found 864.4384; UV (MeOH) $\lambda_{\text {max }} 261 \mathrm{~nm}$, sh 297 nm . Anal. Calcd for $\mathrm{C}_{48} \mathrm{H}_{61} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{Si}$: C, 66.72; H, 7.12; N, 8.10. Found C, 66.65; H, 7.13; N, 7.97.
N-1-[(1R,2S,3R,4R)-2,3-(Isopropylidenedioxy)-4-[(5-monometh-oxytrityl)oxymethyl]cyclopentyl]-2', $\mathbf{3}^{\prime}-O$-isopropylideneadenosine (29). A mixture of $28(1.74 \mathrm{~g}, 2.0 \mathrm{mmol})$, TBAF (1.0 M in THF, 22.6 mL , $22.6 \mathrm{mmol})$, and $\mathrm{AcOH}(657 \mu \mathrm{~L}, 10.4 \mathrm{mmol})$ in THF (7 mL) was stirred at room temperature for 1 h . The mixture was evaporated, and the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, 3.5 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ to give $29\left(1.52 \mathrm{~g}\right.$, quant) as a white form: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 7.71(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 7.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 7.44-6.81(\mathrm{~m}, 14$ $\mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.76\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\prime} 1^{\prime}, J_{1^{\prime}, 2^{\prime}}=3.6 \mathrm{~Hz}\right), 5.49\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 5^{\prime}-\mathrm{OH}\right)$, 5.10 (dd, 1 H, H-2' $\left., J_{2^{\prime \prime}, 1^{\prime \prime}}=5.1, J_{2^{\prime \prime}, 3^{\prime \prime}}=6.8 \mathrm{~Hz}\right), 5.04\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right.$, $\left.\mathrm{H}-3^{\prime}\right), 4.97$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}$), 4.53 ($\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}, J_{3^{\prime \prime}, 2^{\prime \prime}}=5.8, J_{3^{\prime \prime}, 4^{\prime \prime}}=$ 2.7 Hz), 4.37 (m, $\left.1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 3.92$ (dd, $1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{a}, J_{5^{\prime} \mathrm{a}, 4^{\prime}}=1.0, J_{5^{\prime} \mathrm{a}, 5^{\prime} \mathrm{b}}$ $=12.5 \mathrm{~Hz}), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.77\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{b}\right), 3.34(\mathrm{dd}, 1 \mathrm{H}$, $\mathrm{H}-5^{\prime \prime} \mathrm{a}, J_{5^{\prime \prime} \mathrm{a}, 4^{\prime \prime}}=3.5, J_{5^{\prime \prime} \mathrm{a}, 5^{\prime \prime} \mathrm{b}}=8.8 \mathrm{~Hz}$), $3.17\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime} \mathrm{b}, J_{5^{\prime \prime} \mathrm{b}, 4^{\prime \prime}}=\right.$ $5.8, J_{5^{\prime \prime} \mathrm{b}, 5^{\prime \prime} \mathrm{a}}=8.8 \mathrm{~Hz}$), $2.42\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-4^{\prime \prime}, \mathrm{H}-6^{\prime \prime}\right), 1.63,1.53,1.37$, 1.27 (each s, each 3 H , isopropyl CH_{3}); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 67.8 \mathrm{MHz}\right)$ $\delta 158.5,153.8,146.4,144.5,144.5,139.3,138.0,135.7,130.3,128.4$, $127.7,126.8,125.4,114.2,113.2,113.0,93.8,86.1,85.8,83.6,82.4$, 81.5, 81.3, 64.2, 63.2, 55.2, 44.7, 33.6, 30.8, 27.7, 27.5, 25.3, 25.2; HRMS (FAB, positive) calcd for $\mathrm{C}_{42} \mathrm{H}_{48} \mathrm{~N}_{5} \mathrm{O}_{8} 750.3503\left(\mathrm{MH}^{+}\right)$, found 750.3509 ; UV (MeOH) $\lambda_{\text {max }} 261 \mathrm{~nm}$, sh 300 nm . Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{47} \mathrm{~N}_{5} \mathrm{O}_{8} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 66.48 ; \mathrm{H}, 6.38 ; \mathrm{N}, 9.23$. Found C, 66.50; H, 6.44; N, 8.98.
N-1-[(1R,2S,3R,4R)-2,3-(Isopropylidenedioxy)-4-[(5-monomethoxytrityl)oxymethyl $]$ cyclopentyl $]-5^{\prime}-O$-[bis(phenylthio)phosphoryl]$\mathbf{2}^{\prime}, \mathbf{3}^{\prime}$ - \boldsymbol{O}-isopropylideneadenosine (30). After stirring a mixture of PSS $(2.19 \mathrm{~g}, 5.7 \mathrm{mmol})$ and $\operatorname{TPSCl}(1.74 \mathrm{~g}, 5.7 \mathrm{mmol})$ in pyridine $(15 \mathrm{~mL})$ at room temperature for $1.0 \mathrm{~h}, 29(1.44 \mathrm{~g}, 1.9 \mathrm{mmol})$ was added, and the resulting mixture was stirred at room temperature for 1.0 h . The mixture was evaporated, and the residue was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was purified by column chromatography ($\mathrm{SiO}_{2}, 2 \% \mathrm{MeOH}$ in CHCl_{3}) to give $30(1.27 \mathrm{~g}, 66 \%)$ as a white form: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 7.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2)$, $7.51-6.81(\mathrm{~m}, 24 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.97\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}, J_{1^{\prime}, 2^{\prime}}=2.4 \mathrm{~Hz}\right), 5.28$ (br s, $1 \mathrm{H}, \mathrm{NH}$), 5.13 (dd, $1 \mathrm{H}, \mathrm{H}-2^{\prime}, J_{2^{\prime}, 1^{\prime}}=2.4, J_{2^{\prime}, 3^{\prime}}=6.3 \mathrm{~Hz}$), 5.11 (m, $\left.1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 4.93\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right), 4.92\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}, J_{3^{\prime}, 2^{\prime}}=6.3\right.$, $\left.J_{3^{\prime}, 4^{\prime}}=2.8 \mathrm{~Hz}\right), 4.53\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 4.43-4.36\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-4^{\prime}, \mathrm{H}^{\prime} 5^{\prime}\right)$, 3.79 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.79 (m, $1 \mathrm{H}, \mathrm{H}-5^{\prime \prime} \mathrm{a}$), 3.73 (m, $\left.1 \mathrm{H}, \mathrm{H}-5^{\prime \prime} \mathrm{b}\right), 2.41$ (m, $3 \mathrm{H}, \mathrm{H}-4^{\prime \prime}, \mathrm{H}-6^{\prime \prime}$), 1.60, $1.521 .36,1.25$ (each s, each 3 H , isopropyl $\left.\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 67.8 \mathrm{MHz}\right) \delta 158.5,154.1,146.6,144.6,144.5$, 137.3, 135.7, 135.3, 135.2, 135.1, 135.1, 130.3, 129.6, 129.4, 128.4, 127.7, 126.7, 125.9, 124.4, 114.6, 113.0, 90.7, 86.1, 84.9, 84.8, 84.4, $82.6,81.6,81.1,66.4,66.3,64.3,64.1,55.2,44.9,33.5,27.7,27.1$, 25.3, 25.3; ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 202 \mathrm{MHz}\right.$, decoupled with $\left.{ }^{1} \mathrm{H}\right) \delta 51.0$; HRMS (FAB, positive) calcd for $\mathrm{C}_{54} \mathrm{H}_{57} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{PS}_{2} 1014.3335\left(\mathrm{MH}^{+}\right)$, found 1014.3320; UV (MeOH) $\lambda_{\max } 260 \mathrm{~nm}$, sh 296 nm . Anal. Calcd for $\mathrm{C}_{54} \mathrm{H}_{56} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{PS}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 63.39 ; \mathrm{H}, 5.62 ; \mathrm{N}, 6.84$. Found C, 63.32; H, 5.69; N, 6.54 .
$N-1-[(1 R, 2 S, 3 R, 4 R)-2,3-(I s o p r o p y l i d e n e d i o x y)-4-(h y d r o x y-~$ methyl)cyclopentyl]-5' $-O$-[bis(phenylthio)phosphoryl]-2', 3^{\prime} - O-isopropylideneadenosine (31). A solution of $30(1.19 \mathrm{~g}, 1.17 \mathrm{mmol})$ in 80% aqueous $\mathrm{AcOH}(15 \mathrm{~mL})$ was stirred at room temperature for 6 h . The resulting mixture was evaporated, and the residue was partitioned between EtOAc and aqueous saturated NaHCO_{3}. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and then brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, 3 \% \mathrm{MeOH}\right.$ in
CHCl_{3}) to give $31(665 \mathrm{mg}, 77 \%)$ as a white form: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 7.68$ (br s, $2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-8$), $7.64-7.22(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $5.98\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}, J_{1^{\prime}, 2^{\prime}}=1.9 \mathrm{~Hz}\right), 5.31\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 5.13(\mathrm{dd}, 1 \mathrm{H}$, $\left.\mathrm{H}-2^{\prime}, J_{2^{\prime}, 1^{\prime}}=1.9, J_{2^{\prime}, 3^{\prime}}=6.1 \mathrm{~Hz}\right), 4.93\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 4.73(\mathrm{dd}, 1 \mathrm{H}$, $\left.\mathrm{H}-3^{\prime}, J_{3^{\prime}, 2^{\prime}}=6.1, J_{3^{\prime}, 4^{\prime}}=2.2 \mathrm{~Hz}\right), 4.53\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right), 4.44-4.37(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{H}-4^{\prime}, \mathrm{H}-5^{\prime}$), 3.78 (dd, $1 \mathrm{H}, \mathrm{H}-5^{\prime \prime} \mathrm{a}, J_{5^{\prime \prime}, 4^{\prime \prime}}=5.0, J_{5^{\prime \prime}, 5^{\prime \prime} \mathrm{b}}=10.6$ Hz), 3.71 (m, $\left.1 \mathrm{H}, \mathrm{H}-5^{\prime \prime} \mathrm{b}\right), 2.56$ (m, $2 \mathrm{H}, \mathrm{H}-4^{\prime \prime}, \mathrm{H}^{\prime \prime} \mathrm{C}^{\prime \mathrm{a}}$), 2.45 (m, 1 H , $\mathrm{H}-6^{\prime \prime} \mathrm{b}$), $1.60,1.561 .36,1.31$ (each s, each 3 H , isopropyl CH_{3}); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 67.8 \mathrm{MHz}\right) \delta 153.6,147.6,140.6,137.9,135.3,135.2$, 135.1, 135.0, 129.7, 129.6, 129.6, 129.4, 125.9, 125.8, 124.3, 114.6, $111.8,90.8,85.0,84.9,84.4,83.4,82.3,81.2,70.3,66.4,66.3,64.6$, $44.9,30.3,28.0,27.1,25.2 ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 202 \mathrm{MHz}\right.$, decoupled with ${ }^{1} \mathrm{H}$) δ 51.1; HRMS (FAB, positive) calcd for $\mathrm{C}_{34} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{PS}_{2}$ $742.2134\left(\mathrm{MH}^{+}\right)$, found 742.2128 ; UV (MeOH) $\lambda_{\text {max }} 254 \mathrm{~nm}$, sh 299 nm . Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{PS}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 54.39 ; \mathrm{H}, 5.50 ; \mathrm{N}$, 9.33. Found C, 54.37; H, 5.48; N, 9.44.
$N-1-[(1 R, 2 S, 3 R, 4 R)$-2,3-(Isopropylidenedioxy)-4-(phosphonoxy-methyl)cyclopentyl]-5' $\mathbf{5}^{\prime}$ O-[(phenylthio)phosphoryl]-2', $\mathbf{3}^{\prime}$ - O-isopropylideneadenosine (14). $\mathrm{POCl}_{3}(186 \mu \mathrm{~L}, 2.0 \mathrm{mmol})$ was added to a solution of $31(148 \mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{PO}(\mathrm{OMe})_{3}(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for 20 min . The reaction was quenched by aqueous saturated $\mathrm{NaHCO}_{3}(4 \mathrm{~mL})$, and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min . To the mixture were added TEAA buffer ($2.0 \mathrm{M}, 1 \mathrm{~mL}$) and $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$, and then the resulting solution was applied to a C_{18} reversed phase column $(1.1 \times 18 \mathrm{~cm})$. The column was developed using a linear gradient of $0-60 \% \mathrm{CH}_{3} \mathrm{CN}$ in TEAA buffer ($0.1 \mathrm{M}, \mathrm{pH} 7.0,400 \mathrm{~mL}$). Appropriate fractions were evaporated, and excess TEAA was removed by C_{18} reversed phase column chromatography $(1.1 \times 18 \mathrm{~cm}$, eluted with 60% aqueous $\mathrm{CH}_{3} \mathrm{CN}$). Appropriate fractions were evaporated, and the residue was coevaporated with pyridine $(1 \mathrm{~mL} \times 3)$. A mixture of the residue, $\mathrm{H}_{3} \mathrm{PO}_{2}(80 \mu \mathrm{~L}, 1.6 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(104 \mu \mathrm{~L}, 0.75 \mathrm{mmol})$ in pyridine $(2.0 \mathrm{~mL})$ was stirred at $0^{\circ} \mathrm{C}$ for 1.0 h and then at room temperature for 16 h in the dark. After TEAA buffer ($2.0 \mathrm{M}, 1.0 \mathrm{~mL}$) was added, the mixture was evaporated, and the residue was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was evaporated with TEAA buffer $(2.0 \mathrm{M}, 1.0 \mathrm{~mL})$, and the residue was dissolved in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The solution was applied to a C_{18} reversed phase column $(1.1 \times 18 \mathrm{~cm})$, and the column was developed using a linear gradient of $0-40 \%$ $\mathrm{CH}_{3} \mathrm{CN}$ in TEAA buffer ($0.1 \mathrm{M}, \mathrm{pH} 7.0,400 \mathrm{~mL}$). Appropriate fractions were evaporated, and excess TEAA was removed by C_{18} reversed phase column chromatography ($1.1 \times 18 \mathrm{~cm}$, eluted with 40% aqueous $\mathrm{CH}_{3} \mathrm{CN}$) to give 14 ($125 \mathrm{mg}, 75 \%$) as a triethylammonium salt: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}\right) \delta 8.66$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2$), 8.41 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-8$), 7.28$7.11(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.33\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}, J_{1^{\prime}, 2^{\prime}}=2.2 \mathrm{~Hz}\right), 5.41(\mathrm{dd}, 1$ $\mathrm{H}, \mathrm{H}-2^{\prime}, J_{2^{\prime}, 1^{\prime}}=2.2, J_{2^{\prime}, 3^{\prime}}=6.0 \mathrm{~Hz}$), $5.02\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}, J_{3^{\prime}, 2^{\prime}}=6.0\right.$, $\left.J_{3^{\prime}, 4^{\prime}}=1.7 \mathrm{~Hz}\right), 4.96-4.85\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-1^{\prime \prime}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-3^{\prime \prime}\right), 4.75(\mathrm{~m}, 1 \mathrm{H}$, H-4'), 4.23 (m, 1 H, H-5'a), 4.15 (m, 1 H, H-5'b), 4.06 (m, 2 H, H-5"), $3.19\left(\mathrm{q}, 6 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}, J=7.3 \mathrm{~Hz}\right), 2.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4^{\prime \prime}, \mathrm{H}-6^{\prime \prime} \mathrm{a}\right), 2.45$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime} \mathrm{b}$), 1.66, 1.65, 1.42, 1.42 (each s, each 3 H , isopropyl CH_{3}), $1.28\left(\mathrm{t}, 9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}, J=7.3 \mathrm{~Hz}\right.$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}$) $\delta 153.8,148.7,147 . \overline{0}, 146.5,135.0,135.0,132.3,131.7,130.4,122.1$, $118.4,117.5,94.3,89.0,88.9,86.8,86.3,84.2,83.2,68.6,68.5,67.9$, $67.8,49.4,46.2,46.1,35.5,28.7,27.0,26.7,11.0 ;{ }^{31} \mathrm{P}$ NMR ($\mathrm{D}_{2} \mathrm{O}$, 202 MHz , decoupled with ${ }^{1} \mathrm{H}$) $\delta 1.05(\mathrm{~s}), 17.10(\mathrm{~s})$; HRMS (FAB, negative) calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{5} \mathrm{O}_{12} \mathrm{P}_{2} \mathrm{~S} 728.1556\left[(\mathrm{M}-\mathrm{H})^{-}\right]$, found 728.1576; UV ($\left.\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\text {max }}=260 \mathrm{~nm}$.

Cyclic ADP-carbocyclic-ribose Diacetonide (32). To a mixture of $\mathrm{AgNO}_{3}(41 \mathrm{mg}, 241 \mu \mathrm{~mol}), \mathrm{Et}_{3} \mathrm{~N}(33 \mu \mathrm{~L}, 241 \mu \mathrm{~mol})$, and molecular sieves ($3 \AA$) (1.0 g) in pyridine (8 mL), was added a solution of $\mathbf{1 4}$ $(9.5 \mathrm{mg}, 11.4 \mu \mathrm{~mol})$ in pyridine (8 mL) slowly over 15 h , using a syringe-pump, at room temperature in the dark. The molecular sieves were filtered off with Celite and washed with $\mathrm{H}_{2} \mathrm{O}$. To the combined filtrate and washings was added TEAA buffer ($2.0 \mathrm{M}, \mathrm{pH} 7.0,1 \mathrm{~mL}$), and the resulting solution was evaporated. The residue was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$, and the aqueous layer was evaporated. The residue was dissolved in 0.1 M TEAA buffer (5 mL), which was applied to a C_{18} reverse phase column $(1.1 \times 11 \mathrm{~cm})$. The column was developed using a linear gradient of $0-40 \% \mathrm{CH}_{3} \mathrm{CN}$ in TEAA buffer $(0.1 \mathrm{M}, \mathrm{pH} 7.0,200 \mathrm{~mL})$. Appropriate fractions were evaporated, and excess TEAA was removed by C_{18} reverse phase column chromatog-
raphy ($1.1 \mathrm{~cm} \times 11 \mathrm{~cm}$, eluted with 20% aqueous $\mathrm{CH}_{3} \mathrm{CN}$) to give $\mathbf{3 2}$ $\left(7.7 \mathrm{mg}, 10.5 \mu \mathrm{~mol}, 131 \mathrm{OD}_{260}\right.$ units, 93%) as a triethylammonium salt: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}\right) \delta 8.77(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 8.42(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}-8), 6.40$ (br s, $1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 5.81 (d, $1 \mathrm{H}, \mathrm{H}-2^{\prime}, J_{2^{\prime}, 3^{\prime}}=6.0 \mathrm{~Hz}$), 5.02 (dd, $1 \mathrm{H}, \mathrm{H}-3^{\prime}, J_{3^{\prime}, 2^{\prime}}=6.0, J_{3^{\prime}, 4^{\prime}}=2.4 \mathrm{~Hz}$), 4.89-4.86(m,3 H, H-1", $\left.\mathrm{H}-2^{\prime \prime}, \mathrm{H}-3^{\prime \prime}\right), 4.61$ (m, $\left.1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.20-4.14$ (m, $2 \mathrm{H}, \mathrm{H}-5^{\prime}$), 4.06 (m, $1 \mathrm{H}, \mathrm{H}-5^{\prime \prime} \mathrm{a}$), 3.97 (m, $\left.1 \mathrm{H}, \mathrm{H}-5^{\prime \prime} \mathrm{b}\right), 3.20\left(\mathrm{q}, 6 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}, J=7.3\right.$ $\mathrm{Hz}), 3.14\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime} \mathrm{a}\right), 2.91$ (m, $\left.1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 2.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime} \mathrm{b}\right)$, $1.65,1.64,1.46,1.43$ (each s, each 3 H , isopropyl CH_{3}), $1.28(\mathrm{t}, 9 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}, J=7.3 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}$) $\delta 153.7,149.2$, $1 \overline{48} .0,122.6,117.4,115.2,94.3,89.7,89.2,89.1,87.3,86.3,84.2,72.1$, 69.2, 67.3, 49.5, 46.9, 46.8, 31.0, 28.9, 28.8, 27.1, 26.9, 11.0; ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 202 \mathrm{MHz}\right.$, decoupled with $\left.{ }^{1} \mathrm{H}\right) \delta-10.39(\mathrm{~d}, J=15.3 \mathrm{~Hz}),-10.80$ (d, $J=15.3 \mathrm{~Hz}$); HRMS (FAB, negative) calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{5} \mathrm{O}_{12} \mathrm{P}_{2}$ $618.1366\left[(\mathrm{M}-\mathrm{H})^{-}\right]$, found 618.1413; $\mathrm{UV}\left(\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\text {max }}=258 \mathrm{~nm}$.

Cyclic ADP-carbocyclic-ribose (4). A solution of 32 (128 OD ${ }_{260}$ units) in 60% aqueous $\mathrm{HCO}_{2} \mathrm{H}(1 \mathrm{~mL})$ was stirred at room temperature for 3.5 h . After the solvent was evaporated, $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL} \times 3)$ was added to the residue and evaporated. To the residue was added TEAB buffer $(0.1 \mathrm{M}, 30 \mu \mathrm{~L})$ and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, and the resulting solution was lyophilized to give 4 [115 OD_{260} units, 90%] as a triethylammonium salt: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 400 \mathrm{MHz}, J\right.$ value was measured by spin decoupling) $\delta 9.14$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2$), $8.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 6.06(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{H}-1^{\prime}, J_{1^{\prime}, 2^{\prime}}=6.3 \mathrm{~Hz}$), 5.14 (dd, $1 \mathrm{H}, \mathrm{H}-2^{\prime}, J_{2^{\prime}, 1^{\prime}}=6.3, J_{2^{\prime}, 3^{\prime}}=4.4 \mathrm{~Hz}$), 4.95 (ddd, $1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}, J_{1^{\prime \prime}, 2^{\prime \prime}}=4.4, J_{1^{\prime \prime}, 6^{\prime \prime}}=10.2, J_{1^{\prime \prime}, 6^{\prime \prime} \mathrm{b}}=2.9 \mathrm{~Hz}$), 4.61 (dd, 1 H, H-3', $J_{3^{\prime}, 2^{\prime}}=4.4, J_{3^{\prime}, 4^{\prime}}=2.4 \mathrm{~Hz}$), 4.54 (ddd, $1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{a}, J_{5^{\prime}, 4^{\prime}}$ $\left.=7.7, J_{5^{\prime}, 5^{\prime} \mathrm{b}}^{\prime}=10.2, J_{5^{\prime} \mathrm{a}, \mathrm{P}}=2.4 \mathrm{~Hz}\right), 4.41\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, J_{2^{\prime \prime}, 1^{\prime \prime}}=4.4\right.$, $\left.J_{2^{\prime \prime}, 3^{\prime \prime}}=3.9 \mathrm{~Hz}\right), 4.41\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}, J_{4^{\prime}, 3^{\prime}}=2.4, J_{4^{\prime}, 5^{\prime} \mathrm{a}}=7.7, J_{4^{\prime}, 5^{\prime} \mathrm{b}}=\right.$ $3.4 \mathrm{~Hz}), 4.24\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}, J_{3^{\prime \prime}, 2^{\prime \prime}}=3.9, J_{3^{\prime \prime}, 4^{\prime \prime}}=3.9 \mathrm{~Hz}\right), 4.19(\mathrm{~m}, 2$ H, H-5 ') , 4.11 (ddd, $1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{b}, J_{5^{\prime}, 4^{\prime}}=3.4, J_{5^{\prime}, 5^{\prime} \mathrm{a}}=10.2, J_{5^{\prime} \mathrm{b}, \mathrm{P}}=3.4$ $\mathrm{Hz}), 3.18\left(\mathrm{q}, 6 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}, J=7.3 \mathrm{~Hz}\right), 3.07$ (ddd, $1 \mathrm{H}, \mathrm{H}-6^{\prime \prime} \mathrm{a}, J_{6^{\prime} \mathrm{a}, 1^{\prime \prime}}$ $\left.=10.2, J_{6^{\prime}, 4^{\prime \prime}}=10.7, J_{6^{\prime}, b_{6}{ }^{\prime} \mathrm{b}}=15.1 \mathrm{~Hz}\right), 2.55\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 2.41$ (ddd, $1 \mathrm{H}, \mathrm{H}-6^{\prime \prime} \mathrm{b}, J_{6^{\prime} \mathrm{b}, 1^{\prime \prime}}=2.9, J_{6^{\prime} \mathrm{b}, 4^{\prime \prime}}=3.4, J_{6^{\prime \prime} \mathrm{b}, 6^{\prime \prime} \mathrm{a}}=15.1 \mathrm{~Hz}$), 1.28 (t, $9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}, J=7.3 \mathrm{~Hz}$); NOE ($\mathrm{D}_{2} \mathrm{O}, 400 \mathrm{MHz}$) irradiated $\mathrm{H}-2$, observed $\mathrm{H}-2^{\prime \prime}(4.8 \%), \mathrm{H}-3^{\prime \prime}(3.9 \%), \mathrm{H}-6^{\prime \prime} \mathrm{b}(7.2 \% \%)$, irradiated $\mathrm{H}-8$, observed $\mathrm{H}-\mathrm{l}^{\prime}(14.4 \%)$, irradiated $\mathrm{H}-6^{\prime \prime} \mathrm{b}$, observed $\mathrm{H}-2$ (14.5%); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}\right) \delta 154.0(\mathrm{C}-6), 149.2$ (C-4), 147.9 (C-8), 147.0 (C-2), 122.8 (C-5), 93.3 (C-1'), 87.7 'C-4'), 81.1 (C-2"), 76.6 (C-3"), 76.2 (C-2'), 73.5 (C-3'), 68.1 (C-5"), 67.5 (C-5'), 66.8 (C-1"), 49.5 $\left(-\mathrm{CH}_{2} \mathrm{~N}\right), 45.6\left(\mathrm{C}-4^{\prime \prime}\right), 31.1\left(\mathrm{C}-6^{\prime \prime}\right), 11.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right) ;{ }^{31} \mathrm{P}$ NMR ($\mathrm{D}_{2} \mathrm{O}$, 202 MHz , decoupled with $\left.{ }^{1} \mathrm{H}\right) \delta-9.20(\mathrm{~d}, \bar{J}=11.4 \mathrm{~Hz}),-10.26(\mathrm{~d}$, $J=11.4 \mathrm{~Hz}$); HRMS (FAB, negative) calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{O}_{12} \mathrm{P}_{2}$ $538.0740\left[(\mathrm{M}-\mathrm{H})^{-}\right]$, found 538.0723 ; UV $\left(\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\text {max }}=259 \mathrm{~nm}(\epsilon=$ 11100, based on the total phosphate analysis), UV ($\mathrm{pH} 11.5,25 \mathrm{mM}$ phosphate buffer) $\lambda_{\max }=261 \mathrm{~nm}$, sh 291 nm . The potassium salt of 4 was prepared by the successive treatments of the above triethylamomonium salt with Diaion PK-212 resign (H^{+}form) and with the same resign (K^{+}form).

Chemical Stability of cADPR (1) and cADPcR (4). A buffer (pH 2.0, $50 \mathrm{mM} \mathrm{KCl}-\mathrm{HCl}$ buffer; $\mathrm{pH} 7.0,100 \mathrm{mM}$ TEAA buffer; pH 12.0, $50 \mathrm{mM} \mathrm{KCl}-\mathrm{NaOH}$ buffer) containing cADPR (free acid, Yamasa, Tokyo, Japan) or cADPcR (potassium salt) ($1.0 \mathrm{OD}_{260}$ unit) was incubated at $37^{\circ} \mathrm{C}$. The reaction mixtures ($10 \mu \mathrm{~L}$) were sampled after $2.0,4.0,6.0,8.0,24,48,72 \mathrm{~h}$, and were then added to a TEAA buffer $(\mathrm{pH} 7.0,100 \mathrm{mM}, 90 \mu \mathrm{~L})$ at $0{ }^{\circ} \mathrm{C}$. The resulting solutions ($50 \mu \mathrm{~L}$) were analyzed by reverse phase and ion exchange HPLC (TSK-GEL DEAE-2SW, $4.6 \mathrm{~mm} \times 250 \mathrm{~mm} ; 0-300 \mathrm{mM} \mathrm{HCO} \mathrm{NH}_{4} / 20 \% \mathrm{MeCN}$, $20 \mathrm{~min} ; 260 \mathrm{~nm}$).

The Dimroth Rearrangement of cADPcR (4) Forming N^{6}-Cyclic ADP-carbocyclic-ribose (34). A solution of 4 (potassium salt, 115 OD_{260} units, $9.3 \mu \mathrm{~mol}$) in a $\mathrm{KCl}-\mathrm{NaOH}$ buffer (50 mM , $\mathrm{pH} 12.0,4$ mL) was stirred at $37^{\circ} \mathrm{C}$ for 4 days. After addition of $\mathrm{H}_{2} \mathrm{O}(90 \mathrm{~mL})$, the pH of the mixture was adjusted about 4.0 with AcOH , and the resulting solution was applied to a DEAE-Sephadex A-25 column $\left(\mathrm{HCO}_{3}{ }^{-}\right.$form, $1.5 \mathrm{~cm} \times 20 \mathrm{~cm}$). The column was developed using a linear gradient of $0.1-0.5 \mathrm{M}$ TEAB buffer ($\mathrm{pH} 7.8,400 \mathrm{~mL}$). Appropriate fractions were evaporated and coevaporated with $\mathrm{H}_{2} \mathrm{O}$ (three times) to remove excess TEAB. The residue was lyophilized to give $34\left(106 \mathrm{OD}_{265}\right.$ units, $6.5 \mu \mathrm{~mol}, 70 \%$; the yield was calculated using the molar absorption coefficient of N^{6}-methyladenosine $(\epsilon$ $\left.=16300, \lambda_{\max }=265 \mathrm{~nm}\right)^{4 \mathrm{~b}}$ as a triethylammonium salt: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$,
$500 \mathrm{MHz}) \delta 8.51,8.38$ (each s, each $1 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-8$), 6.17 ($\mathrm{s}, 1 \mathrm{H}$, $\left.\mathrm{H}-1^{\prime}\right), 4.75$ (m, $\left.1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 4.64$ (m, $\left.1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.60$ (m, $\left.1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right)$, 4.42 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}$), 4.36 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$), 4.24 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}$), $4.10-$ 3.94 (m, $\left.4 \mathrm{H}, \mathrm{H}-5^{\prime}, \mathrm{H}-5^{\prime \prime}\right), 3.20\left(\mathrm{q}, 6 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}, J=7.3 \mathrm{~Hz}\right), 2.38$ (m, $1 \mathrm{H}, \mathrm{H}-6^{\prime \prime} \mathrm{a}$), 2.30 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}$), 2.11 (m, $\left.1 \mathrm{H}, \mathrm{H}-6^{\prime \prime} \mathrm{b}\right), 1.28$ (t, $\left.9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}, J=7.3 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 202 \mathrm{MHz}\right.$, decoupled with $\left.{ }^{1} \overline{\mathrm{H}}\right) \delta-9.25(\mathrm{~m}),-9.69(\mathrm{~m})$; HRMS (FAB, negative) calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{O}_{12} \mathrm{P}_{2} 538.0740\left[(\mathrm{M}-\mathrm{H})^{-}\right]$, found 538.0752; UV $\left(\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\max }$ $=271 \mathrm{~nm}(\mathrm{pH} 7.0), \mathrm{UV}\left(\mathrm{pH} 11.5,25 \mathrm{mM}\right.$ phosphate buffer) $\lambda_{\max }=$ $271 \mathrm{~nm} ;{ }^{13} \mathrm{C}$ NMR (potassium salt, $\left.\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}\right) \delta 156.6$ (C-6), 154.3 (C-2), 151.2 (C-4), 143.4 (C-8), 122.1 (C-5), 93.0 (C-1'), 85.8 (C-4'), 78.8 (C-2"), 76.1 (C-2'), 75.4 (C-3"), 72.1 (C-3'), 68.4 (C-5"), 65.9 (C-5'), 60.1 (C-1"), 44.9 (C-4"), 32.3 (C-6").

Stabilitiy of cADPR (1) and cADPcR (4) in Membrane Fraction of Rat Brain Extract. Rat brain extract was prepared by a procedure according to the previous method. ${ }^{16}$ cADPR (free acid) or cADPcR (potassium salt) (1.0 OD_{260} unit) was preincubated in 8 mM Hepes-Pipes-Tris buffer $(\mathrm{pH} 7.0,8 \mathrm{mM}, 150 \mu \mathrm{~L})$ at $37{ }^{\circ} \mathrm{C}$ for 5 min . This was added to the solution of the membrane fraction of rat brain extract $(100 \mu \mathrm{~L})$, and the mixture was incubated at $37^{\circ} \mathrm{C}$. The reaction mixture was sampled $(25 \mu \mathrm{~L})$ at every 30 min afterward and diluted with water $(175 \mu \mathrm{~L})$, which was frozen in liquid nitrogen to stop the reaction. After the samples were a centrifuged at 12000 rpm at $4^{\circ} \mathrm{C}$ for 15 min , supernatants were filtered using a centrifugal filter at 12000 rpm at 4 ${ }^{\circ} \mathrm{C}$ for 15 min , and the resulting filtrates $(50 \mu \mathrm{~L})$ were analyzed by ion-exchange HPLC (TSK-GEL DEAE-2SW, $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$; $0-300 \mathrm{mM} \mathrm{HCO} 2 \mathrm{NH}_{4} / 20 \% \mathrm{MeCN}, 20 \mathrm{~min} ; 260 \mathrm{~nm}$).

Treatments of cADPR (1) and cADPcR (4) by CD38 cADPR Hydrolase. ThioHis-CD38 cADPR hydrolase was expressed in Escherichia coli BL21(DE3) cells and purified from crude cell extract using Ni^{2+}-chelating column (Invitrogen) according to the reported method. ${ }^{18}$ cADPR (free acid) or cADPcR (potassium salt) $\left(0.5 \mathrm{OD}_{260}\right.$ unit) was preincbated in Hepes-Pipes-Tris buffer ($\mathrm{pH} 7.0,5 \mathrm{mM}, 230$ $\mu \mathrm{L}$) at $37{ }^{\circ} \mathrm{C}$ for 5 min . To the solution was added CD38 solution (20 $\mu \mathrm{L}),{ }^{18}$ and the resulting mixture was incubated at $37{ }^{\circ} \mathrm{C}$. The reaction mixture was sampled $(40 \mu \mathrm{~L})$ at every 15 min , added to water (160 $\mu \mathrm{L})$, and frozen in liquid nitrogen to stop the reaction. After the samples were centrifuged at 12000 rpm at $4^{\circ} \mathrm{C}$ for 15 min , the supernatants were filtered using a centrifugal filter at 12000 rpm at $4^{\circ} \mathrm{C}$ for 30 min, and the resulting filtrates $(125 \mu \mathrm{~L})$ were analyzed by ion-exchange HPLC (TSK-GEL DEAE-2SW, $4.6 \mathrm{~mm} \times 250 \mathrm{~mm} ; 0-300 \mathrm{mM}$ $\mathrm{HCO}_{2} \mathrm{NH}_{4} / 20 \% \mathrm{MeCN}, 20 \mathrm{~min} ; 260 \mathrm{~nm}$).

Measurement of $\mathbf{C a}^{2+}$-Mobilizing in Sea Urchin Eggs. Eggs of a species of Japanese sea urchin, Anthocidaris crassispina, were shed into filtrated seawater (FSW) by injection of 0.5 M KCl into the coelomic cavity, and the shed eggs were washed three times with FSW. The eggs were stripped of their jelly coats by washing twice with Ca^{2+} and Mg^{2+}-free artificial seawater [CaMgFASW; $520 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM}$ $\mathrm{KCl}, 10 \mathrm{mM}$ 3-[4-(2-hydroxyethyl)-1-piperazinyl]-propanesulfonic acid (Epps), titrated to pH 8.2 with tris(hydroxymethyl)aminomethane (Tris), and 2 mM ethylenediamine- $N, N, N^{\prime}, N^{\prime}$-tetraacetic acid (EDTA)], then were rinsed twice more with standard artificial seawater (stdASW; 430 $\mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM} \mathrm{KCl}, 50 \mathrm{mM} \mathrm{MgCl} 2,10 \mathrm{mM} \mathrm{CaCl} 2,10 \mathrm{mM}$ Epps,
12.5 mM Tris, pH 8.2) and were finally resuspended in fresh stdASW. Sperm were likewise shed by injecting 0.5 M KCl , collected directly from the genital pores, stored at $4^{\circ} \mathrm{C}$ until use, and diluted 5000 -fold into stdASW just before use. $\left[\mathrm{Ca}^{2+}\right]_{i}$ was measured with a Ca^{2+}-sensitive fluorescent dye, indo-1 (Dojindo, Kumamoto, Japan). Each egg cell was fastened to a poly-L-lysine ($M_{\mathrm{r}}=1000-4000$; Sigma) coated glass coverslip at the bottom of $150 \mu \mathrm{~L}$ stdASW in a Lucite-frame chamber, mounted on the stage of a TMD epifluorescence microscope (Nikon, Tokyo, Japan). The dye was pressure-injected into eggs at a final concentration of $100 \mu \mathrm{M}$, from a 10 mM stock solution containing 100 mM potassium aspartate and 10 mM Hepes, titrated to pH 7.0 with Tris, according to the method of Hiramoto. ${ }^{22}$ For measuring the fluorescence of indo-1, the selected wavelengths were 355 nm (bandpass) at the excitation filter, 380 nm (cutoff) at the dichroic mirror, and simultaneously 405 nm (band-pass) and 485 nm (band-pass) at the emission detectors, which were Hamamatsu R647-01 photomultipliers (Hamamatsu Photonics, Hamamatsu, Japan). Fluorescence from the whole egg was measured, and $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ was calculated from the ratio of $405-\mathrm{nm}$ fluorescence intensity to the corresponding $485-\mathrm{nm}$ intensity, according to the previously reported method. ${ }^{23}$ Under the monitoring of $\left[\mathrm{Ca}^{2+}\right]_{i}$, cADPR or cADPcR was injected into eggs in the dark. These chemicals were dissolved in injection buffer, were filled in the tip of micropipet, and were pressure-injected $\sim 1 \mathrm{~min}$ after impalement of the micropipet into eggs. Experiments were performed at $20-25^{\circ} \mathrm{C}$.

Acknowledgment. This investigation was supported by a Grant-in-Aid for Creative Scientific Research (13NP0401) from the Japan Society for Promotion of Science. We also thank the Japan Society for Promotion of Sciences for support of M.F. We are grateful to Professor T. Katada and Dr. Kontani for their kind gift of CD38 plasmid, to Dr. S. Sakata for his kind gift of cADPR, to Professor H. Harashima for his suggestion on the rat brain experiment, and to Professor B. V. L. Potter for helpful discussion. We are also grateful to Ms. H. Matsumoto, A. Maeda, S. Oka, and N. Hazama (Center for Instrumental Analysis, Hokkaido University) for technical assistance with NMR, MS, and elemental analysis.

Supporting Information Available: Figures showing stability of cADPcR (4) and cADPR (1) in aqueous media, stability of cADPcR (4) and cADPR (1) in rat brain extract, and susceptibility of cADPcR (4) and cADPR (1) to CD38 cADPR hydrolase; ${ }^{1} \mathrm{H}$ NMR data table of cADPR (1) and cADPcR (4) in $\mathrm{D}_{2} \mathrm{O} ;{ }^{1} \mathrm{H}$ NMR spectral charts of $\mathbf{2 2}, \mathbf{3 0}, \mathbf{1 4}, \mathbf{3 2}$, and 4 (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA010756D

[^6]
[^0]: * Corresponding author. Satoshi Shuto. Telephone: 81-11-706-3229.

 Fax: 81-11-706-4980. E-mail: shu@pharm.hokudai.ac.jp.
 ${ }^{\dagger}$ Hokkaido University.
 $\stackrel{\star}{*}$ Toyama University.
 (1) This report constitutes Part 209 of Nucleosides and Nucleotides. Part 208, see: Ueno, Y.; Mikawa, M.; Hoshika, S.; Matsuda, A. Bioconjugate Chem. 2001, 12, 635-642.
 (2) Clapper, D. L.; Walseth, T. F.; Dargie, P. J.; Lee, H. C. J. Biol. Chem. 1987, 262, 9561-9568.
 (3) (a) Galione, A. Science 1993, 259, 325-326. (b) Lee, H. C.; Galione, A.; Walseth, T. F. Vitam. Horm. 1994, 48, 199-257. (c) Dousa, T. P.; Chini, E. N.; Beers, K. W. Am J. Physol. 1996, 271, C1007-C1024. (d) Lee, H. C. Physiol. Rev. 1997, 77, 1133-1164. (e) Lee, H. C. Cell. Biochem. Biophys. 1998, 28, 1-17. (f) Galione, A.; Cui, Y.; Empson, R.; Iino, S.; Wilson, H.; Terrar, D. Cell Biochem. Biophys. 1998, 28, 19-30. (g) Guse, A. H. Cell Signal. 1999, 11, 309-316.
 (4) (a) Lee, C. H.; Walseth, T. F.; Bratt, G. T.; Hayes, R. N.; Clapper, D. L. J. Biol. Chem. 1989, 264, 1608-1615. (b) Kim, H.; Jacobson, E. L.; Jacobson, M. K. Biochem. Biophys. Res. Commun. 1993, 194, 1143-1147. (c) Lee, H. C.; Aarhus, R.; Levitt, D. Nat. Struct. Biol. 1994, 1, 143-144. (d) Gu, Q.-M.; Sih, C. J. J. Am. Chem. Soc. 1994, 116, 7481-7486. (e) Wada, T.; Inageda, K.; Aritomo, K.; Tokita, K.; Nishina, H.; Takahashi, K.; Katada, T.; Sekine, M. Nucleosides Nucleotides 1995, 14, 1301-1341.

[^1]: (11) (a) Nakagawa, I.; Konya, S.; Ohtani, S.; Hata, T. Synthesis 1980, 556-557. (b) Sekine, M.; Kamimura, T.; Hata, T. J. Chem. Soc., Perkin Trans. 1 1985, 997-1000. (c) Sekine, M.; Nishiyama, S.; Kamimura, T.; Osaki, Y.; Hata, T. Bull. Chem. Soc. Jpn. 1985, 58, 850-860. (d) Fukuoka, K.; Suda, F.; Suzuki, R.; Ishikawa, M.; Takaku, H.; Hata, T. Nucleosides Nucleotides 1994, 13, 1557-1567.
 (12) (a) Brookers, P.; Lawley, P. D. J. Chem. Soc. 1960, 539-545. (b) Ames, B. N.; Martin, R. G.; Garry, B. J. J. Biol. Chem. 1961, 236, 20192026.

[^2]: (13) Yoshikawa, M.; Kato, T.; Takenishi. T. Bull. Chem. Soc. Jpn. 1969, 42, 3505-3508.
 (14) Hata, T.; Kamimura, T.; Urakami, K.; Kohno, K.; Sekine, M.; Kumagai, I.; Shinozaki, K.; Miura, K. Chem. Lett. 1987, 117-120.

[^3]: (15) Chang. C.-J.; Ashworth, D. J.; Chern, L-.J.; Gomes, D.; Lee, C.G.; Mou, P. W.; Narayan, R. Org. Magn. Reson. 1984, 22, 671-675.
 (16) Lee, H. C.; Aarhus, R. Biochim. Biophys. Acta 1993, 1164, 68-74.
 (17) (a) Howard, M.; Girimaldi, J. C.; Bazan, J. F.; Lund, F. E.; SantosArgumedo, L.; Parkhouse, R. M. E.; Walseth, T. F.; Lee, H. C. Science 1994, 262, 1056-1059. (b) Takasawa, S.; Tohgo, A.; Noguchi, N.; Kogura, T.; Nata, K.; Sugimoto, T.; Yonekura, H.; Okamoto, H. J. Biol. Chem. 1994, 268, 26052-26054.
 (18) Kukimoto, I.; Hoshino, S.; Kontani, K.; Inageda, K.; Nishina, H.; Takahashi, K.; Katada, T. Eur. J. Biochem. 1996, 239, 177-182.

[^4]: (19) Preliminary experiments showed that cADPcR (4) also induced $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ increases in patch-clamped NG108-15 neuronal cells: Hashii, M.; Higashida, H. unpublished results.
 (20) Although cADPR synthesized from NAD^{+}by ADP-ribosylcyclase might be very rapidly hydrolyzed in cells, e.g., within 1 min , because of its role as a second messenger (see ref 3), the reaction conditions of cADPR hydrolysis by the brain extract or CD38 in this study were selected to be suitable for the HPLC assay ($t_{1 / 2}=15-40 \mathrm{~min}$).

[^5]: (21) Hosmane, R. S.; Lim, B. B.; Burnett, F. M. J. Org. Chem. 1988, 53, 382-386.

[^6]: (22) Hiramoto, Y. Exp. Cell Res. 1974, 87, 403-406.
 (23) Grynkiewicz, G.; Poenie, M.; Tsien, R. Y. J. Biol. Chem. 1985, 260, 3440-3450.

